We have two equations to solve. The first equation is: $(x+2)^2 - (x-y)(x+y) - 3(y+5) = 0$ The second equation is: $(2y-3)^2 - y(4y-y) + 4(3x-\frac{3}{4}) = 0$
AlgebraSystems of EquationsQuadratic EquationsSubstitutionAlgebraic Manipulation
2025/5/16
1. Problem Description
We have two equations to solve.
The first equation is:
(x+2)2−(x−y)(x+y)−3(y+5)=0
The second equation is:
(2y−3)2−y(4y−y)+4(3x−43)=0
2. Solution Steps
First, let's solve the first equation:
(x+2)2−(x−y)(x+y)−3(y+5)=0
Expand the terms:
x2+4x+4−(x2−y2)−3y−15=0
x2+4x+4−x2+y2−3y−15=0
4x+y2−3y−11=0
4x=−y2+3y+11
x=4−y2+3y+11
Now, let's solve the second equation:
(2y−3)2−y(4y−y)+4(3x−43)=0
Expand the terms:
4y2−12y+9−y(3y)+12x−3=0
4y2−12y+9−3y2+12x−3=0
y2−12y+6+12x=0
Now substitute the value of x from the first equation into the second equation:
y2−12y+6+12(4−y2+3y+11)=0
y2−12y+6+3(−y2+3y+11)=0
y2−12y+6−3y2+9y+33=0
−2y2−3y+39=0
2y2+3y−39=0
Now solve this quadratic equation for y:
y=2a−b±b2−4ac
y=2(2)−3±32−4(2)(−39)
y=4−3±9+312
y=4−3±321
So, y1=4−3+321 and y2=4−3−321
Now, substitute these values of y into the equation x=4−y2+3y+11 to find the corresponding x values.