The problem asks us to simplify the radical expression $\sqrt{300}$.AlgebraRadicalsSimplificationSquare RootsExponentsPrime Factorization2025/3/221. Problem DescriptionThe problem asks us to simplify the radical expression 300\sqrt{300}300.2. Solution StepsWe need to find the prime factorization of300.300=3×100=3×10×10=3×2×5×2×5=22×52×3300 = 3 \times 100 = 3 \times 10 \times 10 = 3 \times 2 \times 5 \times 2 \times 5 = 2^2 \times 5^2 \times 3300=3×100=3×10×10=3×2×5×2×5=22×52×3.So, 300=22×52×3=22×52×3=2×5×3=103\sqrt{300} = \sqrt{2^2 \times 5^2 \times 3} = \sqrt{2^2} \times \sqrt{5^2} \times \sqrt{3} = 2 \times 5 \times \sqrt{3} = 10\sqrt{3}300=22×52×3=22×52×3=2×5×3=103.300=100⋅3=100⋅3=103\sqrt{300} = \sqrt{100 \cdot 3} = \sqrt{100} \cdot \sqrt{3} = 10\sqrt{3}300=100⋅3=100⋅3=1033. Final Answer10310\sqrt{3}103