The problem presents three systems of linear equations. We will solve the third system of equations (labeled 'д' in the image): $x + y + z + u = 0$ $2x + y + 2z - u = 9$ $3x - y - 3z + u = -2$ $4x - y - z - u = 10$

AlgebraLinear EquationsSystems of EquationsElimination MethodSolving Equations
2025/5/24

1. Problem Description

The problem presents three systems of linear equations. We will solve the third system of equations (labeled 'д' in the image):
x+y+z+u=0x + y + z + u = 0
2x+y+2zu=92x + y + 2z - u = 9
3xy3z+u=23x - y - 3z + u = -2
4xyzu=104x - y - z - u = 10

2. Solution Steps

We have a system of 4 linear equations with 4 unknowns (x,y,z,ux, y, z, u). We can solve this system using various methods like substitution, elimination, or matrix methods. Here, we will use elimination.
First, we label the equations:
(1) x+y+z+u=0x + y + z + u = 0
(2) 2x+y+2zu=92x + y + 2z - u = 9
(3) 3xy3z+u=23x - y - 3z + u = -2
(4) 4xyzu=104x - y - z - u = 10
Add equation (1) and (2):
(1) + (2): (x+2x)+(y+y)+(z+2z)+(uu)=0+9(x + 2x) + (y + y) + (z + 2z) + (u - u) = 0 + 9
3x+2y+3z=93x + 2y + 3z = 9 (5)
Add equation (1) and (3):
(1) + (3): (x+3x)+(yy)+(z3z)+(u+u)=02(x + 3x) + (y - y) + (z - 3z) + (u + u) = 0 - 2
4x2z+2u=24x - 2z + 2u = -2 (6)
Divide equation (6) by 2:
2xz+u=12x - z + u = -1 (7)
Add equation (1) and (4):
(1) + (4): (x+4x)+(yy)+(zz)+(uu)=0+10(x + 4x) + (y - y) + (z - z) + (u - u) = 0 + 10
5x=105x = 10
x=2x = 2
Substitute x=2x = 2 into equation (5):
3(2)+2y+3z=93(2) + 2y + 3z = 9
6+2y+3z=96 + 2y + 3z = 9
2y+3z=32y + 3z = 3 (8)
Substitute x=2x = 2 into equation (7):
2(2)z+u=12(2) - z + u = -1
4z+u=14 - z + u = -1
z+u=5-z + u = -5
u=z5u = z - 5 (9)
Substitute x=2x = 2 and u=z5u = z - 5 into equation (1):
2+y+z+(z5)=02 + y + z + (z - 5) = 0
y+2z3=0y + 2z - 3 = 0
y=32zy = 3 - 2z (10)
Substitute y=32zy = 3 - 2z into equation (8):
2(32z)+3z=32(3 - 2z) + 3z = 3
64z+3z=36 - 4z + 3z = 3
6z=36 - z = 3
z=3z = 3
Substitute z=3z = 3 into equation (10):
y=32(3)y = 3 - 2(3)
y=36y = 3 - 6
y=3y = -3
Substitute z=3z = 3 into equation (9):
u=35u = 3 - 5
u=2u = -2
Therefore, x=2,y=3,z=3,u=2x = 2, y = -3, z = 3, u = -2.

3. Final Answer

x=2,y=3,z=3,u=2x = 2, y = -3, z = 3, u = -2