First, let's simplify the second term denominator:
x2+a2+b2−2ax−2bx+2ab=x2−2x(a+b)+(a2+2ab+b2)=x2−2x(a+b)+(a+b)2=(x−(a+b))2=(x−a−b)2. So, the given equation becomes:
(x−a−b)(x+a+b)1+(x−a−b)21=(x+a+b)22. Now, let's find a common denominator for the left side:
(x−a−b)(x+a+b)1+(x−a−b)21=(x−a−b)2(x+a+b)(x−a−b)+(x+a+b)=(x−a−b)2(x+a+b)2x. So we want to prove:
(x−a−b)2(x+a+b)2x=(x+a+b)22. This implies:
2x(x+a+b)2=2(x−a−b)2(x+a+b) x(x+a+b)2=(x−a−b)2(x+a+b) x(x+a+b)=(x−a−b)2 x2+x(a+b)=x2−2x(a+b)+(a+b)2 3x(a+b)=(a+b)2 3x=a+b (assuming a+b=0). x=3a+b. However, the given problem asks to verify the equation. It looks like there is a typo in the original question.
Let us try to modify the right-hand side to make the problem true.
The equation
(x−a−b)(x+a+b)1+(x−a−b)21=(x−a−b)2(x+a+b)2x should be equal to (x+a+b)22, which means we want to manipulate (x−a−b)2(x+a+b)2x to equal (x+a+b)22. If the RHS were (x+a+b)(x2−(a+b)2)2x=(x+a+b)(x−a−b)(x+a+b)2x=(x−a−b)(x+a+b)22x, the equation we want to prove is: (x−a−b)(x+a+b)1+(x−a−b)21=(x−a−b)(x+a+b)2x Multiplying both sides by (x−a−b)2(x+a+b)2 gives (x−a−b)(x+a+b)+(x+a+b)2=x(x−a−b). x+a+b+x−a−b=2x=(x+a+b)2 We have (x−a−b)2(x+a+b)2x. We want this equal to something. Let the RHS be x2−a2−b2−2ab2=(x−a−b)(x+a+b)2. Then: (x−a−b)(x+a+b)1+(x−a−b)21=(x−a−b)(x+a+b)2 (x−a−b)21=(x−a−b)(x+a+b)1 (x−a−b)(x+a+b)=(x−a−b)2 x+a+b=x−a−b which gives 2a+2b=0, which is false. The original equation is unlikely to be correct.