The problem is to evaluate the expression $25\frac{3}{4} + 6[7\frac{1}{2} - 8\{\frac{7}{15} \div (1\frac{2}{15} - \frac{2}{15})\}]$.

ArithmeticFractionsOrder of OperationsMixed Numbers
2025/5/25

1. Problem Description

The problem is to evaluate the expression 2534+6[7128{715÷(1215215)}]25\frac{3}{4} + 6[7\frac{1}{2} - 8\{\frac{7}{15} \div (1\frac{2}{15} - \frac{2}{15})\}].

2. Solution Steps

First, convert the mixed numbers to improper fractions.
2534=25×4+34=100+34=103425\frac{3}{4} = \frac{25 \times 4 + 3}{4} = \frac{100 + 3}{4} = \frac{103}{4}
712=7×2+12=14+12=1527\frac{1}{2} = \frac{7 \times 2 + 1}{2} = \frac{14 + 1}{2} = \frac{15}{2}
1215=1×15+215=15+215=17151\frac{2}{15} = \frac{1 \times 15 + 2}{15} = \frac{15 + 2}{15} = \frac{17}{15}
Substitute these values into the expression.
1034+6[1528{715÷(1715215)}]\frac{103}{4} + 6[\frac{15}{2} - 8\{\frac{7}{15} \div (\frac{17}{15} - \frac{2}{15})\}]
Next, evaluate the expression within the innermost parentheses.
1715215=17215=1515=1\frac{17}{15} - \frac{2}{15} = \frac{17 - 2}{15} = \frac{15}{15} = 1
Now the expression becomes:
1034+6[1528{715÷1}]\frac{103}{4} + 6[\frac{15}{2} - 8\{\frac{7}{15} \div 1\}]
Evaluate the expression within the curly braces.
715÷1=715\frac{7}{15} \div 1 = \frac{7}{15}
Now the expression becomes:
1034+6[1528(715)]\frac{103}{4} + 6[\frac{15}{2} - 8(\frac{7}{15})]
Evaluate the expression within the square brackets.
8(715)=8×715=56158(\frac{7}{15}) = \frac{8 \times 7}{15} = \frac{56}{15}
1525615=15×152×1556×215×2=2253011230=22511230=11330\frac{15}{2} - \frac{56}{15} = \frac{15 \times 15}{2 \times 15} - \frac{56 \times 2}{15 \times 2} = \frac{225}{30} - \frac{112}{30} = \frac{225 - 112}{30} = \frac{113}{30}
Now the expression becomes:
1034+6(11330)\frac{103}{4} + 6(\frac{113}{30})
6(11330)=6×11330=67830=11356(\frac{113}{30}) = \frac{6 \times 113}{30} = \frac{678}{30} = \frac{113}{5}
Finally,
1034+1135=103×54×5+113×45×4=51520+45220=515+45220=96720\frac{103}{4} + \frac{113}{5} = \frac{103 \times 5}{4 \times 5} + \frac{113 \times 4}{5 \times 4} = \frac{515}{20} + \frac{452}{20} = \frac{515 + 452}{20} = \frac{967}{20}

3. Final Answer

96720\frac{967}{20}

Related problems in "Arithmetic"

The image presents two statements: "$2 + 1 = 4$" and "Odd numbers are divisible by 2". The problem i...

Basic ArithmeticNumber PropertiesDivisibilityLogical Reasoning
2025/6/6

The problem is to evaluate the sum $3^3 + 3^3 + 3^3$.

ExponentsOrder of OperationsSimplification
2025/6/6

The problem requires us to convert $0.0093 \text{ km}^2$ to $\text{cm}^2$.

Units ConversionAreaMetric SystemExponents
2025/6/5

The problem asks to calculate $\frac{11}{7} \div \frac{5}{8}$ and express the answer as a fraction i...

Fraction DivisionSimplifying Fractions
2025/6/5

The problem asks to calculate the area of a book in square meters, given its dimensions in centimete...

Area CalculationUnit ConversionMeasurement
2025/6/5

The problem states that $n\%$ of $4869$ is a certain value. The goal is to find $n$. Since the other...

PercentageArithmetic Operations
2025/6/3

The problem is to evaluate the expression $3\frac{3}{4} \times (-1\frac{1}{5}) + 5\frac{1}{2}$.

FractionsMixed NumbersOrder of OperationsArithmetic Operations
2025/6/3

We need to evaluate the expression $1\frac{1}{5} \times [(-1\frac{1}{4}) + (-3\frac{3}{4})]$.

FractionsMixed NumbersOrder of OperationsArithmetic Operations
2025/6/3

We need to evaluate the expression $1\frac{3}{10} + \frac{1}{2} \times (-\frac{3}{5})$.

FractionsMixed NumbersArithmetic OperationsOrder of Operations
2025/6/3

The problem asks us to evaluate the expression $1\frac{1}{5} \times (-\frac{2}{3}) + 1\frac{1}{5}$.

FractionsMixed NumbersOrder of OperationsArithmetic Operations
2025/6/3