First, convert the mixed numbers to improper fractions.
2543=425×4+3=4100+3=4103 721=27×2+1=214+1=215 1152=151×15+2=1515+2=1517 Substitute these values into the expression.
4103+6[215−8{157÷(1517−152)}] Next, evaluate the expression within the innermost parentheses.
1517−152=1517−2=1515=1 Now the expression becomes:
4103+6[215−8{157÷1}] Evaluate the expression within the curly braces.
157÷1=157 Now the expression becomes:
4103+6[215−8(157)] Evaluate the expression within the square brackets.
8(157)=158×7=1556 215−1556=2×1515×15−15×256×2=30225−30112=30225−112=30113 Now the expression becomes:
4103+6(30113) 6(30113)=306×113=30678=5113 Finally,
4103+5113=4×5103×5+5×4113×4=20515+20452=20515+452=20967