First, we expand both sides of the equation:
2(x+19)=2x+38 13x+2(x2−19)=13x+2x2−38 So, the equation becomes:
2x+38=13x+2x2−38 Now, rearrange the equation to set it equal to zero:
2x2+13x−2x−38−38=0 2x2+11x−76=0 We can solve this quadratic equation using the quadratic formula:
x=2a−b±b2−4ac In our case, a=2, b=11, and c=−76. Plugging these values into the quadratic formula: x=2(2)−11±112−4(2)(−76) x=4−11±121+608 x=4−11±729 x=4−11±27 So, we have two possible solutions:
x1=4−11+27=416=4 x2=4−11−27=4−38=−219