We can use the quadratic formula to solve for z: z=2a−b±b2−4ac In this case, a=1, b=1−2i, and c=5+i. z=2(1)−(1−2i)±(1−2i)2−4(1)(5+i) z=2−1+2i±1−4i−4−20−4i z=2−1+2i±−23−8i Now we need to find the square root of −23−8i. Let −23−8i=x+iy, where x and y are real numbers. Squaring both sides gives:
−23−8i=(x+iy)2=x2−y2+2ixy Equating the real and imaginary parts, we get:
x2−y2=−23 2xy=−8⟹xy=−4⟹y=−x4 Substituting the second equation into the first:
x2−(−x4)2=−23 x2−x216=−23 x4−16=−23x2 x4+23x2−16=0 Let u=x2. Then the equation becomes: u2+23u−16=0 u=2−23±232−4(−16)=2−23±529+64=2−23±593 Since x is real, x2 must be positive. Thus x2=2−23+593. This approach is getting complicated. Let's try a different method.
We want to solve (x+iy)2=−23−8i. x2−y2=−23 x2−x216=−23 x4+23x2−16=0 Instead, let's try assuming −23−8i=a+bi. Then (a+bi)2=a2−b2+2abi=−23−8i. Thus, a2−b2=−23 and 2ab=−8, so ab=−4 and b=−4/a. Substituting, a2−a216=−23, so a4−16=−23a2, so a4+23a2−16=0. Let X=a2. X2+23X−16=0. X=2−23±232−4(1)(−16)=2−23±529+64=2−23±593. Since a is real, X>0. Then X=2−23+593, so a=±2−23+593. If a is positive, b is negative. If a is negative, b is positive. Instead we should have looked for integers a and b.
Let's try completing the square directly on the equation.
z2+(1−2i)z+(5+i)=0 (z+21−2i)2=(z+21−i)2=z2+(1−2i)z+41−i−1=z2+(1−2i)z−43−i z2+(1−2i)z+(5+i)=(z+21−i)2+5+i+43+i=(z+21−i)2+423+2i So (z+21−i)2=−423−2i=−423+8i z+21−i=±−423+8i=±2−23−8i Let −23−8i=a+bi. Then a2−b2=−23, and 2ab=−8. ab=−4, b=−4/a. a2−a216=−23, a4−16=−23a2, a4+23a2−16=0. Notice (−23−8i)=−(23+8i), let's guess that 23+8i=x+iy such that x and y are integers. x2−y2=23,2xy=8,xy=4. Then y=4/x. x2−x216=23. x4−16=23x2. x4−23x2−16=0. Instead: −23−8i=a+bi. Square both sides. a2−b2+2abi=−23−8i. So a2−b2=−23 and 2ab=−8, so ab=−4. Try a=1, b=−4, then a2−b2=1−16=−15. Not it. Try a=2, b=−2, then a2−b2=4−4=0. Not it. Try a=4, b=−1, then a2−b2=16−1=15. Not it. a2−b2=−23 means b2−a2=23. Try b=1,a=−4. Note −23−8i=−25+2−8i=2−25−8i. Let us assume (1−4i). Nope (1−4i)2=1−16−8i=−15−8i. Let −23−8i=a+bi be such that (a+bi)2=−23−8i then a2−b2=−23 and 2ab=−8 so ab=−4. Try (a,b)=(1,−4) then a2−b2=−15, no Try (2,−2) then a2−b2=0, no Try (4,−1) then a2−b2=15, no. But if ab=−4, and we want integers. Try complex square root a=1 We want z=2−1+2i±(a+bi). Since (a+bi)2=−23−8i, it follows that the equation (a−4i)2 does not contain −4. (1−4i)=12−2 z=2−1+2i±(15+4) Then a2−b2=−23,2ab=−8;ab=−4. Let −23−8i=x+iy, then (x+iy)2=x2−y2+2ixy=−23−8i. Then x2−y2=−23, and 2xy=−8. From 2xy=−8 we get xy=−4. From the other equation x2−y2=−23, plugging in y=−4/x, we have x2−x216=−23, so x4+23x2−16=0. So x2=2−23±593. Let's re-write the problem to z2+(1−2i)z+(5+i)=0. Using quadratic formula, z=2−(1−2i)±(1−2i)2−4(5+i)=2−1+2i±1−4i−4−20−4i=2−1+2i±−23−8i Let −23−8i=a+bi, so (a+bi)2=−23−8i, then a2−b2=−23, 2ab=−8, ab=−4. So a=±1,2,4. Try −23−8i=(1−4i) so (a,b)=(1,−4),2ab=−8,a2−b2=−15=−23.