The problem provides a contingency table showing the distribution of 2000 individuals based on age and preferred sport. The questions ask us to: 1. Calculate the Chi-square statistic.

Probability and StatisticsChi-square testContingency tableCramer's VTschuprow's TStatistical significance
2025/6/9

1. Problem Description

The problem provides a contingency table showing the distribution of 2000 individuals based on age and preferred sport. The questions ask us to:

1. Calculate the Chi-square statistic.

2. Calculate Cramer's V and Tschuprow's T coefficients.

3. Determine if age influences the choice of sport.

2. Solution Steps

First, let's create the contingency table with observed values. The rows represent age groups, and the columns represent sports.
| Age | Equation | Football | Golf | Natation | Tennis | Row Total |
|-----------|----------|----------|------|----------|--------|-----------|
| <20 | 50 | 140 | 20 | 140 | 150 | 500 |
| [20,30[ | 80 | 150 | 50 | 170 | 250 | 700 |
| [30,40[ | 80 | 50 | 70 | 100 | 200 | 500 |
| 40+ | 30 | 20 | 60 | 90 | 100 | 300 |
| Col Total | 240 | 360 | 200 | 500 | 700 | 2000 |
Now we calculate the expected values for each cell. The expected value for cell (i,j) is calculated as:
Eij=(Row Totali)×(Column Totalj)Grand TotalE_{ij} = \frac{(\text{Row Total}_i) \times (\text{Column Total}_j)}{\text{Grand Total}}
For example, the expected value for the first cell (age < 20, Equation) is:
E11=500×2402000=60E_{11} = \frac{500 \times 240}{2000} = 60
We calculate the expected values for all cells:
| Age | Equation | Football | Golf | Natation | Tennis |
|-----------|----------|----------|------|----------|--------|
| <20 | 60 | 90 | 50 | 125 | 175 |
| [20,30[ | 84 | 126 | 70 | 175 | 245 |
| [30,40[ | 60 | 90 | 50 | 125 | 175 |
| 40+ | 36 | 54 | 30 | 75 | 105 |
Next, we calculate the Chi-square statistic. The formula is:
χ2=(OijEij)2Eij\chi^2 = \sum \frac{(O_{ij} - E_{ij})^2}{E_{ij}}
where OijO_{ij} is the observed value and EijE_{ij} is the expected value.
χ2=(5060)260+(14090)290+(2050)250+(140125)2125+(150175)2175\chi^2 = \frac{(50-60)^2}{60} + \frac{(140-90)^2}{90} + \frac{(20-50)^2}{50} + \frac{(140-125)^2}{125} + \frac{(150-175)^2}{175}
+(8084)284+(150126)2126+(5070)270+(170175)2175+(250245)2245+ \frac{(80-84)^2}{84} + \frac{(150-126)^2}{126} + \frac{(50-70)^2}{70} + \frac{(170-175)^2}{175} + \frac{(250-245)^2}{245}
+(8060)260+(5090)290+(7050)250+(100125)2125+(200175)2175+ \frac{(80-60)^2}{60} + \frac{(50-90)^2}{90} + \frac{(70-50)^2}{50} + \frac{(100-125)^2}{125} + \frac{(200-175)^2}{175}
+(3036)236+(2054)254+(6030)230+(9075)275+(100105)2105+ \frac{(30-36)^2}{36} + \frac{(20-54)^2}{54} + \frac{(60-30)^2}{30} + \frac{(90-75)^2}{75} + \frac{(100-105)^2}{105}
χ2=10060+250090+90050+225125+625175+1684+576126+40070+25175+25245+40060+160090+40050+625125+625175+3636+115654+90030+22575+25105\chi^2 = \frac{100}{60} + \frac{2500}{90} + \frac{900}{50} + \frac{225}{125} + \frac{625}{175} + \frac{16}{84} + \frac{576}{126} + \frac{400}{70} + \frac{25}{175} + \frac{25}{245} + \frac{400}{60} + \frac{1600}{90} + \frac{400}{50} + \frac{625}{125} + \frac{625}{175} + \frac{36}{36} + \frac{1156}{54} + \frac{900}{30} + \frac{225}{75} + \frac{25}{105}
χ21.667+27.778+18+1.8+3.571+0.190+4.571+5.714+0.143+0.102+6.667+17.778+8+5+3.571+1+21.407+30+3+0.238\chi^2 \approx 1.667 + 27.778 + 18 + 1.8 + 3.571 + 0.190 + 4.571 + 5.714 + 0.143 + 0.102 + 6.667 + 17.778 + 8 + 5 + 3.571 + 1 + 21.407 + 30 + 3 + 0.238
χ2159.176\chi^2 \approx 159.176
Now we need to calculate Cramer's V. The formula is:
V=χ2n×min(c1,r1)V = \sqrt{\frac{\chi^2}{n \times \min(c-1, r-1)}}
where nn is the grand total (2000), cc is the number of columns (5), and rr is the number of rows (4).
V=159.1762000×min(51,41)=159.1762000×3=159.17660000.02650.1628V = \sqrt{\frac{159.176}{2000 \times \min(5-1, 4-1)}} = \sqrt{\frac{159.176}{2000 \times 3}} = \sqrt{\frac{159.176}{6000}} \approx \sqrt{0.0265} \approx 0.1628
Now we calculate Tschuprow's T. The formula is:
T=χ2n(r1)(c1)T = \sqrt{\frac{\chi^2}{n \sqrt{(r-1)(c-1)}}}
T=159.1762000(41)(51)=159.17620003×4=159.176200012159.1762000×3.464159.1766928.20.0230.1517T = \sqrt{\frac{159.176}{2000 \sqrt{(4-1)(5-1)}}} = \sqrt{\frac{159.176}{2000 \sqrt{3 \times 4}}} = \sqrt{\frac{159.176}{2000 \sqrt{12}}} \approx \sqrt{\frac{159.176}{2000 \times 3.464}} \approx \sqrt{\frac{159.176}{6928.2}} \approx \sqrt{0.023} \approx 0.1517
To determine if age influences the choice of sport, we can look at the Chi-square value. A higher Chi-square value suggests a stronger association. Additionally, Cramer's V and Tschuprow's T give us a measure of the strength of the association. The value is quite low. However, we need to find the degrees of freedom (df) to compare the χ2\chi^2 statistic to a critical value. The degrees of freedom are:
df=(r1)(c1)=(41)(51)=3×4=12df = (r-1)(c-1) = (4-1)(5-1) = 3 \times 4 = 12
With df=12df = 12 and α=0.05\alpha = 0.05 (a common significance level), the critical value is χcritical2=21.026\chi^2_{critical} = 21.026. Since our calculated χ2\chi^2 (159.176) is much greater than 21.026, we reject the null hypothesis that age and sport choice are independent. Therefore, we conclude that age likely influences the choice of sport.

3. Final Answer

1. Chi-square statistic: $\chi^2 \approx 159.176$

2. Cramer's V: $V \approx 0.1628$, Tschuprow's T: $T \approx 0.1517$

3. Yes, age influences the choice of sport.

Related problems in "Probability and Statistics"

We are given that a secret number is a 4-digit integer created using the digits from 1 to 9. We are ...

ProbabilityCombinatoricsCounting Principles
2025/6/12

The problem provides the distribution of marks scored by students in a test. We are given the marks...

MeanProbabilityData AnalysisAlgebra
2025/6/10

We are given a box of 24 apples, of which 6 are bad. We are taking three apples from the box at rand...

ProbabilityConditional ProbabilityIndependent EventsSampling with Replacement
2025/6/9

The problem provides a table showing the frequency of meals ordered at a restaurant: Sandwich (11), ...

Pie ChartData AnalysisPercentagesFractions
2025/6/8

The problem provides a table showing the favorite subjects (Science, English, and Maths) of students...

FractionsData AnalysisPie ChartsPercentages
2025/6/8

The problem provides a table of observed prices ($Y$) and available quantities ($X$) of a product in...

Regression AnalysisLinear RegressionCorrelation CoefficientCoefficient of DeterminationScatter Plot
2025/6/7

The problem provides a frequency distribution table of marks obtained by students. Part (a) requires...

ProbabilityConditional ProbabilityWithout ReplacementCombinations
2025/6/5

The problem is divided into two questions, question 10 and question 11. Question 10 is about the fre...

Frequency DistributionCumulative FrequencyOgivePercentileProbabilityConditional ProbabilityCombinations
2025/6/5

A number is selected at random from the integers 30 to 48 inclusive. We want to find the probability...

ProbabilityPrime NumbersDivisibility
2025/6/3

The problem describes a survey where 30 people answered about their favorite book genres. The result...

PercentagesData InterpretationPie ChartFractions
2025/6/1