$(2\sqrt{2} - 1)^2$ を計算しなさい。

代数学展開平方根計算
2025/6/11

1. 問題の内容

(221)2(2\sqrt{2} - 1)^2 を計算しなさい。

2. 解き方の手順

(ab)2=a22ab+b2(a-b)^2 = a^2 - 2ab + b^2 を用いて計算します。
まず、a=22a = 2\sqrt{2}b=1b = 1 とおきます。
a2=(22)2=22(2)2=42=8a^2 = (2\sqrt{2})^2 = 2^2 \cdot (\sqrt{2})^2 = 4 \cdot 2 = 8
2ab=2221=422ab = 2 \cdot 2\sqrt{2} \cdot 1 = 4\sqrt{2}
b2=12=1b^2 = 1^2 = 1
したがって、
(221)2=(22)22221+12=842+1=942(2\sqrt{2} - 1)^2 = (2\sqrt{2})^2 - 2 \cdot 2\sqrt{2} \cdot 1 + 1^2 = 8 - 4\sqrt{2} + 1 = 9 - 4\sqrt{2}

3. 最終的な答え

9429 - 4\sqrt{2}

「代数学」の関連問題

与えられた式 $2(x+y)^2 - 7(x+y) - 15$ を因数分解する。

因数分解多項式
2025/6/13

複素数の等式 $(x+6) + 3yi = 4 - 6i$ を満たす実数 $x$ と $y$ の値を求めます。

複素数等式実部虚部
2025/6/13

与えられた一次関数 $y = -x + 3$ について、表の $x$ の値に対応する $y$ の値を求め、⑤、⑥、⑦、⑧ に当てはまる数を答える問題です。

一次関数関数の計算座標平面
2025/6/13

与えられた式 $2(x+y)^2 - 7(x+y) - 15$ を因数分解します。

因数分解二次式式の展開変数変換
2025/6/13

$x = 4 - \sqrt{3}$ のとき、$x^2 - 4x + 4$ の値を求めよ。

式の計算因数分解平方根代入
2025/6/13

与えられた一次関数 $y = 2x - 4$ について、$x$ の値が -1, 0, 1, 2 のときの $y$ の値をそれぞれ計算し、表の①, ②, ③, ④ に当てはまる値を求める問題です。

一次関数関数の計算代入
2025/6/13

与えられた一次関数 $y = 2x - 4$ について、$x$ の値が -1, 0, 1, 2 のときの $y$ の値をそれぞれ求め、表を完成させる問題です。表中の①、②、③、④に当てはまる数値を求め...

一次関数関数の評価座標平面
2025/6/13

与えられた行列 $B = \begin{bmatrix} 2 & 1 & 3 \\ 3 & 2 & 4 \\ 2 & 1 & 1 \end{bmatrix}$ に対して、その逆行列 $B^{-1}$ ...

行列逆行列行列式余因子行列線形代数
2025/6/13

## 1. 問題の内容

一次方程式一次不等式場合分け絶対値
2025/6/13

一次関数 $y = 2x + 5$ について、以下の問いに答えます。 (1) $x = 1$ のとき、$y$ の値を求めます。 (2) $x = 4$ のとき、$y$ の値を求めます。 (3) $x$...

一次関数グラフ変化の割合
2025/6/13