Given a triangle ABC, M is the midpoint of [AB] and I is the midpoint of [MC]. We need to construct a point K such that $\vec{CK} = \frac{1}{3}\vec{CB}$. Then, we need to prove that points A, I, and K are collinear.

GeometryVectorsCollinearityTriangle GeometryMidpoint
2025/3/9

1. Problem Description

Given a triangle ABC, M is the midpoint of [AB] and I is the midpoint of [MC]. We need to construct a point K such that CK=13CB\vec{CK} = \frac{1}{3}\vec{CB}. Then, we need to prove that points A, I, and K are collinear.

2. Solution Steps

First, express AI\vec{AI} in terms of AC\vec{AC} and AB\vec{AB}.
Since I is the midpoint of MC, we have AI=12(AM+AC)\vec{AI} = \frac{1}{2}(\vec{AM} + \vec{AC}).
Since M is the midpoint of AB, AM=12AB\vec{AM} = \frac{1}{2}\vec{AB}.
Therefore,
AI=12(12AB+AC)=14AB+12AC\vec{AI} = \frac{1}{2}(\frac{1}{2}\vec{AB} + \vec{AC}) = \frac{1}{4}\vec{AB} + \frac{1}{2}\vec{AC}.
Next, express AK\vec{AK} in terms of AC\vec{AC} and AB\vec{AB}.
AK=AC+CK=AC+13CB=AC+13(ABAC)=AC+13AB13AC=13AB+23AC\vec{AK} = \vec{AC} + \vec{CK} = \vec{AC} + \frac{1}{3}\vec{CB} = \vec{AC} + \frac{1}{3}(\vec{AB} - \vec{AC}) = \vec{AC} + \frac{1}{3}\vec{AB} - \frac{1}{3}\vec{AC} = \frac{1}{3}\vec{AB} + \frac{2}{3}\vec{AC}.
Now, we need to check if AI\vec{AI} and AK\vec{AK} are collinear. In other words, we need to find a scalar λ\lambda such that AK=λAI\vec{AK} = \lambda \vec{AI}.
If such a λ\lambda exists, then A, I, and K are collinear.
13AB+23AC=λ(14AB+12AC)\frac{1}{3}\vec{AB} + \frac{2}{3}\vec{AC} = \lambda(\frac{1}{4}\vec{AB} + \frac{1}{2}\vec{AC})
13AB+23AC=λ4AB+λ2AC\frac{1}{3}\vec{AB} + \frac{2}{3}\vec{AC} = \frac{\lambda}{4}\vec{AB} + \frac{\lambda}{2}\vec{AC}
Equating the coefficients of AB\vec{AB} and AC\vec{AC}, we get:
13=λ4\frac{1}{3} = \frac{\lambda}{4} and 23=λ2\frac{2}{3} = \frac{\lambda}{2}
From the first equation, λ=43\lambda = \frac{4}{3}.
From the second equation, λ=43\lambda = \frac{4}{3}.
Since both equations yield the same value for λ\lambda, we have λ=43\lambda = \frac{4}{3}.
Therefore, AK=43AI\vec{AK} = \frac{4}{3}\vec{AI}.
Since AK\vec{AK} is a scalar multiple of AI\vec{AI}, the points A, I, and K are collinear.

3. Final Answer

AK=43AI\vec{AK} = \frac{4}{3}\vec{AI}

Related problems in "Geometry"

Given triangle $ABC$ with vertices $A(2, 6)$, $B(2+2\sqrt{2}, 0, 4)$, and $C(2+2\sqrt{2}, 4, 4)$. We...

3D GeometryDistance FormulaLaw of CosinesTrianglesIsosceles TriangleAngle Calculation
2025/6/24

Find the area of the triangle ABC, given the coordinates of the vertices A(2, 2, 6), B(2 + $2\sqrt{2...

3D GeometryVectorsCross ProductArea of Triangle
2025/6/24

In triangle $ABC$, we are given $AB=18$, $AC=12$, and $BC=15$. Point $D$ lies on $AB$ such that $BD=...

TriangleAreaSimilarityHeron's FormulaQuadrilateral
2025/6/23

The problem asks to find the value of angle $x$. We are given a triangle with two interior angles, ...

TrianglesAnglesExterior AnglesInterior Angles
2025/6/22

We are given a triangle with one angle labeled as $57^\circ$, and an exterior angle labeled as $116^...

TrianglesAnglesExterior AnglesAngle Sum Property
2025/6/22

We are given a triangle with one interior angle of $31^{\circ}$. The exterior angle at one vertex is...

TrianglesAnglesInterior AnglesExterior AnglesAngle Sum Property
2025/6/22

The problem asks us to find the size of angle $f$. We are given that the angle vertically opposite t...

AnglesVertical AnglesAngle Calculation
2025/6/22

The problem asks us to find the values of angles $a$ and $b$ in a triangle, given that one exterior ...

TrianglesAnglesInterior AnglesExterior AnglesAngle Sum Property
2025/6/22

We need to find the size of angle $k$ in the given diagram. The diagram shows a quadrilateral with t...

QuadrilateralsAnglesIsosceles Triangle
2025/6/22

We need to find the size of the reflex angle $BCD$ in the given triangle $ABD$. The angles at $A$, $...

TrianglesAnglesReflex AngleAngle Sum Property
2025/6/22