Given a triangle ABC, M is the midpoint of [AB] and I is the midpoint of [MC]. We need to construct a point K such that $\vec{CK} = \frac{1}{3}\vec{CB}$. Then, we need to prove that points A, I, and K are collinear.

GeometryVectorsCollinearityTriangle GeometryMidpoint
2025/3/9

1. Problem Description

Given a triangle ABC, M is the midpoint of [AB] and I is the midpoint of [MC]. We need to construct a point K such that CK=13CB\vec{CK} = \frac{1}{3}\vec{CB}. Then, we need to prove that points A, I, and K are collinear.

2. Solution Steps

First, express AI\vec{AI} in terms of AC\vec{AC} and AB\vec{AB}.
Since I is the midpoint of MC, we have AI=12(AM+AC)\vec{AI} = \frac{1}{2}(\vec{AM} + \vec{AC}).
Since M is the midpoint of AB, AM=12AB\vec{AM} = \frac{1}{2}\vec{AB}.
Therefore,
AI=12(12AB+AC)=14AB+12AC\vec{AI} = \frac{1}{2}(\frac{1}{2}\vec{AB} + \vec{AC}) = \frac{1}{4}\vec{AB} + \frac{1}{2}\vec{AC}.
Next, express AK\vec{AK} in terms of AC\vec{AC} and AB\vec{AB}.
AK=AC+CK=AC+13CB=AC+13(ABAC)=AC+13AB13AC=13AB+23AC\vec{AK} = \vec{AC} + \vec{CK} = \vec{AC} + \frac{1}{3}\vec{CB} = \vec{AC} + \frac{1}{3}(\vec{AB} - \vec{AC}) = \vec{AC} + \frac{1}{3}\vec{AB} - \frac{1}{3}\vec{AC} = \frac{1}{3}\vec{AB} + \frac{2}{3}\vec{AC}.
Now, we need to check if AI\vec{AI} and AK\vec{AK} are collinear. In other words, we need to find a scalar λ\lambda such that AK=λAI\vec{AK} = \lambda \vec{AI}.
If such a λ\lambda exists, then A, I, and K are collinear.
13AB+23AC=λ(14AB+12AC)\frac{1}{3}\vec{AB} + \frac{2}{3}\vec{AC} = \lambda(\frac{1}{4}\vec{AB} + \frac{1}{2}\vec{AC})
13AB+23AC=λ4AB+λ2AC\frac{1}{3}\vec{AB} + \frac{2}{3}\vec{AC} = \frac{\lambda}{4}\vec{AB} + \frac{\lambda}{2}\vec{AC}
Equating the coefficients of AB\vec{AB} and AC\vec{AC}, we get:
13=λ4\frac{1}{3} = \frac{\lambda}{4} and 23=λ2\frac{2}{3} = \frac{\lambda}{2}
From the first equation, λ=43\lambda = \frac{4}{3}.
From the second equation, λ=43\lambda = \frac{4}{3}.
Since both equations yield the same value for λ\lambda, we have λ=43\lambda = \frac{4}{3}.
Therefore, AK=43AI\vec{AK} = \frac{4}{3}\vec{AI}.
Since AK\vec{AK} is a scalar multiple of AI\vec{AI}, the points A, I, and K are collinear.

3. Final Answer

AK=43AI\vec{AK} = \frac{4}{3}\vec{AI}

Related problems in "Geometry"

Find the angle at point $K$. Given that the angle at point $M$ is $60^\circ$ and the angle at point ...

AnglesTrianglesParallel Lines
2025/4/12

We are given a line segment $XY$ with coordinates $X(-8, -12)$ and $Y(p, q)$. The midpoint of $XY$ i...

Midpoint FormulaCoordinate GeometryLine Segment
2025/4/11

In the circle $ABCDE$, $EC$ is a diameter. Given that $\angle ABC = 158^{\circ}$, find $\angle ADE$.

CirclesCyclic QuadrilateralsInscribed AnglesAngles in a Circle
2025/4/11

Given the equation of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where $a \neq b$, we need ...

EllipseTangentsLocusCoordinate Geometry
2025/4/11

We are given a cone with base radius $r = 8$ cm and height $h = 11$ cm. We need to calculate the cur...

ConeSurface AreaPythagorean TheoremThree-dimensional Geometry
2025/4/11

$PQRS$ is a cyclic quadrilateral. We are given the measures of its angles in terms of $x$ and $y$. W...

Cyclic QuadrilateralAnglesLinear EquationsSolving Equations
2025/4/11

In the given diagram, line segment $MP$ is a tangent to circle $NQR$ at point $N$. $\angle PNQ = 64^...

Circle GeometryTangentsAnglesTrianglesIsosceles TriangleAlternate Segment Theorem
2025/4/11

We are given a diagram with two parallel lines intersected by two transversals. We need to find the ...

Parallel LinesTransversalsAnglesSupplementary Angles
2025/4/11

A trapezium with sides 10 cm and 21 cm, and height 8 cm is inscribed in a circle of radius 7 cm. The...

AreaTrapeziumCircleArea Calculation
2025/4/11

In circle $PQRS$ with center $O$, $\angle PQR = 72^\circ$ and $OR \parallel PS$. We need to find the...

Circle GeometryAnglesParallel LinesIsosceles Triangle
2025/4/11