We need to solve four inequalities for $x$. a) $3(2x - 1) < 2x + 5$ b) $-2(-2x + 4) \le x + 7$ c) $-4(x - 3) > -3(x - 5)$ d) $-9(-2x - 3) \ge 4(2x - 3)$

AlgebraInequalitiesLinear InequalitiesSolving Inequalities
2025/6/23

1. Problem Description

We need to solve four inequalities for xx.
a) 3(2x1)<2x+53(2x - 1) < 2x + 5
b) 2(2x+4)x+7-2(-2x + 4) \le x + 7
c) 4(x3)>3(x5)-4(x - 3) > -3(x - 5)
d) 9(2x3)4(2x3)-9(-2x - 3) \ge 4(2x - 3)

2. Solution Steps

a)
3(2x1)<2x+53(2x - 1) < 2x + 5
6x3<2x+56x - 3 < 2x + 5
6x2x<5+36x - 2x < 5 + 3
4x<84x < 8
x<84x < \frac{8}{4}
x<2x < 2
b)
2(2x+4)x+7-2(-2x + 4) \le x + 7
4x8x+74x - 8 \le x + 7
4xx7+84x - x \le 7 + 8
3x153x \le 15
x153x \le \frac{15}{3}
x5x \le 5
c)
4(x3)>3(x5)-4(x - 3) > -3(x - 5)
4x+12>3x+15-4x + 12 > -3x + 15
4x+3x>1512-4x + 3x > 15 - 12
x>3-x > 3
x<3x < -3
d)
9(2x3)4(2x3)-9(-2x - 3) \ge 4(2x - 3)
18x+278x1218x + 27 \ge 8x - 12
18x8x122718x - 8x \ge -12 - 27
10x3910x \ge -39
x3910x \ge \frac{-39}{10}
x3.9x \ge -3.9

3. Final Answer

a) x<2x < 2
b) x5x \le 5
c) x<3x < -3
d) x3910x \ge -\frac{39}{10} or x3.9x \ge -3.9

Related problems in "Algebra"