Given two complex numbers $Z_a = 1 + \sqrt{3}i$ and $Z_b = 2 - 2i$, we are asked to: I. Convert $Z_a$ and $Z_b$ into polar form using principal angles. II. Evaluate $Z_a Z_b$ using the polar forms from part I. III. Evaluate $\frac{Z_a}{Z_b}$ using the polar forms from part I. IV. Determine $(Z_b)^5$ using De Moivre's theorem. V. Find all the cube roots of $Z_a$, i.e., find all solutions to $z^3 = Z_a$.

AlgebraComplex NumbersPolar FormDe Moivre's TheoremComplex Number MultiplicationComplex Number DivisionRoots of Complex Numbers
2025/6/27

1. Problem Description

Given two complex numbers Za=1+3iZ_a = 1 + \sqrt{3}i and Zb=22iZ_b = 2 - 2i, we are asked to:
I. Convert ZaZ_a and ZbZ_b into polar form using principal angles.
II. Evaluate ZaZbZ_a Z_b using the polar forms from part I.
III. Evaluate ZaZb\frac{Z_a}{Z_b} using the polar forms from part I.
IV. Determine (Zb)5(Z_b)^5 using De Moivre's theorem.
V. Find all the cube roots of ZaZ_a, i.e., find all solutions to z3=Zaz^3 = Z_a.

2. Solution Steps

I. Converting to polar form:
For a complex number z=a+biz = a + bi, the polar form is z=r(cosθ+isinθ)z = r(\cos\theta + i\sin\theta), where r=a2+b2r = \sqrt{a^2 + b^2} and θ=arctan(ba)\theta = \arctan(\frac{b}{a}).
For Za=1+3iZ_a = 1 + \sqrt{3}i:
ra=12+(3)2=1+3=4=2r_a = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2.
θa=arctan(31)=π3\theta_a = \arctan(\frac{\sqrt{3}}{1}) = \frac{\pi}{3}.
So, Za=2(cosπ3+isinπ3)Z_a = 2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}).
For Zb=22iZ_b = 2 - 2i:
rb=22+(2)2=4+4=8=22r_b = \sqrt{2^2 + (-2)^2} = \sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2}.
θb=arctan(22)=arctan(1)=π4\theta_b = \arctan(\frac{-2}{2}) = \arctan(-1) = -\frac{\pi}{4}.
So, Zb=22(cos(π4)+isin(π4))Z_b = 2\sqrt{2}(\cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4})).
II. Evaluating ZaZbZ_a Z_b:
If Z1=r1(cosθ1+isinθ1)Z_1 = r_1(\cos\theta_1 + i\sin\theta_1) and Z2=r2(cosθ2+isinθ2)Z_2 = r_2(\cos\theta_2 + i\sin\theta_2), then
Z1Z2=r1r2(cos(θ1+θ2)+isin(θ1+θ2))Z_1 Z_2 = r_1 r_2 (\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)).
ZaZb=(2)(22)(cos(π3π4)+isin(π3π4))Z_a Z_b = (2)(2\sqrt{2})(\cos(\frac{\pi}{3} - \frac{\pi}{4}) + i\sin(\frac{\pi}{3} - \frac{\pi}{4})).
ZaZb=42(cos(4π3π12)+isin(4π3π12))Z_a Z_b = 4\sqrt{2}(\cos(\frac{4\pi - 3\pi}{12}) + i\sin(\frac{4\pi - 3\pi}{12})).
ZaZb=42(cos(π12)+isin(π12))Z_a Z_b = 4\sqrt{2}(\cos(\frac{\pi}{12}) + i\sin(\frac{\pi}{12})).
III. Evaluating ZaZb\frac{Z_a}{Z_b}:
If Z1=r1(cosθ1+isinθ1)Z_1 = r_1(\cos\theta_1 + i\sin\theta_1) and Z2=r2(cosθ2+isinθ2)Z_2 = r_2(\cos\theta_2 + i\sin\theta_2), then
Z1Z2=r1r2(cos(θ1θ2)+isin(θ1θ2))\frac{Z_1}{Z_2} = \frac{r_1}{r_2} (\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)).
ZaZb=222(cos(π3(π4))+isin(π3(π4)))=12(cos(π3+π4)+isin(π3+π4))\frac{Z_a}{Z_b} = \frac{2}{2\sqrt{2}}(\cos(\frac{\pi}{3} - (-\frac{\pi}{4})) + i\sin(\frac{\pi}{3} - (-\frac{\pi}{4}))) = \frac{1}{\sqrt{2}}(\cos(\frac{\pi}{3} + \frac{\pi}{4}) + i\sin(\frac{\pi}{3} + \frac{\pi}{4})).
ZaZb=12(cos(4π+3π12)+isin(4π+3π12))=12(cos(7π12)+isin(7π12))\frac{Z_a}{Z_b} = \frac{1}{\sqrt{2}}(\cos(\frac{4\pi + 3\pi}{12}) + i\sin(\frac{4\pi + 3\pi}{12})) = \frac{1}{\sqrt{2}}(\cos(\frac{7\pi}{12}) + i\sin(\frac{7\pi}{12})).
IV. Determining (Zb)5(Z_b)^5:
If Z=r(cosθ+isinθ)Z = r(\cos\theta + i\sin\theta), then Zn=rn(cos(nθ)+isin(nθ))Z^n = r^n(\cos(n\theta) + i\sin(n\theta)).
(Zb)5=(22)5(cos(5(π4))+isin(5(π4)))=(22)5(cos(5π4)+isin(5π4))(Z_b)^5 = (2\sqrt{2})^5(\cos(5(-\frac{\pi}{4})) + i\sin(5(-\frac{\pi}{4}))) = (2\sqrt{2})^5(\cos(-\frac{5\pi}{4}) + i\sin(-\frac{5\pi}{4})).
(22)5=(23/2)5=215/2=272=1282(2\sqrt{2})^5 = (2^{3/2})^5 = 2^{15/2} = 2^7\sqrt{2} = 128\sqrt{2}.
(Zb)5=1282(cos(5π4)+isin(5π4))=1282(12+i(12))=1282(22i22)=128(1i)=128128i(Z_b)^5 = 128\sqrt{2}(\cos(-\frac{5\pi}{4}) + i\sin(-\frac{5\pi}{4})) = 128\sqrt{2}(-\frac{1}{\sqrt{2}} + i(-\frac{1}{\sqrt{2}})) = 128\sqrt{2}(-\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}) = 128(-1 - i) = -128 - 128i.
V. Finding the cube roots of ZaZ_a:
Za=2(cos(π3)+isin(π3))Z_a = 2(\cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3})). We want to find zz such that z3=Zaz^3 = Z_a.
Let z=r(cosθ+isinθ)z = r(\cos\theta + i\sin\theta). Then z3=r3(cos(3θ)+isin(3θ))z^3 = r^3(\cos(3\theta) + i\sin(3\theta)).
So r3=2r^3 = 2, which means r=23r = \sqrt[3]{2}.
3θ=π3+2πk3\theta = \frac{\pi}{3} + 2\pi k for k=0,1,2k = 0, 1, 2.
θ=π9+2πk3\theta = \frac{\pi}{9} + \frac{2\pi k}{3} for k=0,1,2k = 0, 1, 2.
For k=0k = 0: θ0=π9\theta_0 = \frac{\pi}{9}. z0=23(cos(π9)+isin(π9))z_0 = \sqrt[3]{2}(\cos(\frac{\pi}{9}) + i\sin(\frac{\pi}{9})).
For k=1k = 1: θ1=π9+2π3=π+6π9=7π9\theta_1 = \frac{\pi}{9} + \frac{2\pi}{3} = \frac{\pi + 6\pi}{9} = \frac{7\pi}{9}. z1=23(cos(7π9)+isin(7π9))z_1 = \sqrt[3]{2}(\cos(\frac{7\pi}{9}) + i\sin(\frac{7\pi}{9})).
For k=2k = 2: θ2=π9+4π3=π+12π9=13π9\theta_2 = \frac{\pi}{9} + \frac{4\pi}{3} = \frac{\pi + 12\pi}{9} = \frac{13\pi}{9}. z2=23(cos(13π9)+isin(13π9))z_2 = \sqrt[3]{2}(\cos(\frac{13\pi}{9}) + i\sin(\frac{13\pi}{9})).

3. Final Answer

I. Za=2(cos(π3)+isin(π3))Z_a = 2(\cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3})), Zb=22(cos(π4)+isin(π4))Z_b = 2\sqrt{2}(\cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4}))
II. ZaZb=42(cos(π12)+isin(π12))Z_a Z_b = 4\sqrt{2}(\cos(\frac{\pi}{12}) + i\sin(\frac{\pi}{12}))
III. ZaZb=12(cos(7π12)+isin(7π12))\frac{Z_a}{Z_b} = \frac{1}{\sqrt{2}}(\cos(\frac{7\pi}{12}) + i\sin(\frac{7\pi}{12}))
IV. (Zb)5=128128i(Z_b)^5 = -128 - 128i
V. z0=23(cos(π9)+isin(π9))z_0 = \sqrt[3]{2}(\cos(\frac{\pi}{9}) + i\sin(\frac{\pi}{9})), z1=23(cos(7π9)+isin(7π9))z_1 = \sqrt[3]{2}(\cos(\frac{7\pi}{9}) + i\sin(\frac{7\pi}{9})), z2=23(cos(13π9)+isin(13π9))z_2 = \sqrt[3]{2}(\cos(\frac{13\pi}{9}) + i\sin(\frac{13\pi}{9}))

Related problems in "Algebra"

The problem asks to find the general term for the sequence 1, 5, 14, 30, 55, ...

SequencesSeriesPolynomialsSummation
2025/6/27

The problem asks us to find the axis of symmetry and the vertex of the graph of the given quadratic ...

Quadratic FunctionsVertex FormAxis of SymmetryParabola
2025/6/27

The problem asks us to sketch the graphs of the following two quadratic functions: (1) $y = x^2 + 1$...

Quadratic FunctionsParabolasGraphingVertex FormTransformations of Graphs
2025/6/27

The problem involves complex numbers. Given $z_1 = 5 + 2i$, $z_2 = 7 + yi$, and $z_3 = x - 4i$, we n...

Complex NumbersComplex Number ArithmeticComplex ConjugateSquare Root of Complex Number
2025/6/27

The problem asks us to find the range of values for the constant $a$ such that the equation $4^x - a...

Quadratic EquationsInequalitiesExponentsRoots of EquationsDiscriminant
2025/6/27

Given $A = \{1, 2\}$ and $B = \mathbb{R}$, we need to sketch the graph of $R = A \times B$. We need ...

SetsRelationsFunctionsCartesian ProductGraphs
2025/6/27

Solve the equation $ \lceil x^2 - x \rceil = x + 3 $ for $x \in \mathbb{R}$, where $ \lceil x \rceil...

Ceiling FunctionQuadratic EquationsInteger Solutions
2025/6/27

A lemming runs from point A to a cliff at B at 4 m/s, jumps over the edge and falls to point C at an...

Word ProblemLinear EquationsDistance, Speed, and Time
2025/6/27

Given three matrices $X$, $Y$, and $Z$ as follows: $X = \begin{bmatrix} 5 & 4 & -7 \\ -3 & p & 5 \en...

MatricesMatrix TransposeMatrix MultiplicationMatrix Addition
2025/6/27

We have two problems to solve. Problem 6: A man is 32 years older than his son. Ten years ago, the m...

Word ProblemsSystems of EquationsLinear EquationsRate ProblemsDistance, Rate, and Time
2025/6/26