Given a regular hexagon $ABCDEF$ with $\vec{AB} = p$ and $\vec{BC} = q$, find the vectors $\vec{CD}$, $\vec{DE}$, $\vec{EF}$, $\vec{FA}$, $\vec{AD}$, $\vec{EA}$, and $\vec{AC}$ in terms of $p$ and $q$.

GeometryVectorsHexagonGeometric Vectors
2025/3/30

1. Problem Description

Given a regular hexagon ABCDEFABCDEF with AB=p\vec{AB} = p and BC=q\vec{BC} = q, find the vectors CD\vec{CD}, DE\vec{DE}, EF\vec{EF}, FA\vec{FA}, AD\vec{AD}, EA\vec{EA}, and AC\vec{AC} in terms of pp and qq.

2. Solution Steps

Since ABCDEFABCDEF is a regular hexagon, all sides have the same length, and all interior angles are equal to 120120^\circ.
We have AB=p\vec{AB} = p and BC=q\vec{BC} = q.
Then CD\vec{CD} has the same length as ABAB and BCBC and is at an angle of 120120^\circ with respect to BC\vec{BC}. The sum of interior angles in a hexagon is (62)×180=720(6-2) \times 180^\circ = 720^\circ. Therefore, each interior angle is 720/6=120720^\circ / 6 = 120^\circ.
Since it's a regular hexagon, we have:
CD=p\vec{CD} = -p
DE=q\vec{DE} = -q
EF=AB=p\vec{EF} = -\vec{AB} = -p
FA=BC=q\vec{FA} = -\vec{BC} = -q
AD=AB+BC+CD=p+q+(p)=qp+p=BC+EF=BCAB=BCAB=2qp\vec{AD} = \vec{AB} + \vec{BC} + \vec{CD} = p + q + (-p) = q - p + p = BC+EF=BC-AB= \vec{BC}-\vec{AB}=2q-p
AD=2BCAB=2qp=BC+BC=p+2q\vec{AD} = 2\vec{BC}-\vec{AB} = 2q-p =BC+BC=-p+2q
AC=AB+BC=p+q\vec{AC} = \vec{AB} + \vec{BC} = p + q
EA=DE=qp\vec{EA} = -\vec{DE}=q-p
EA=DE=q\vec{EA}=-\vec{DE}=-q
Now consider AD\vec{AD}:
AD=AB+BC+CD=p+q+(p)=q\vec{AD} = \vec{AB} + \vec{BC} + \vec{CD} = p + q + (-p)=q
Alternatively AD=AF+FE+ED=q+p+q=p+2q\vec{AD} = \vec{AF} + \vec{FE} + \vec{ED} = q + p + q = p+2q
Since BC=qBC=q and the vector along the axis of symmetry through B and opposite E is BE and AD = BE.
AD=BE= AB+AE = AB +2BC
If O is centre AO\vec{AO} = BC\vec{BC}+CD\vec{CD}
CD=AB=p\vec{CD} = -\vec{AB}= -p
DE=BC=q\vec{DE}=-\vec{BC} = -q
EF=FA=p\vec{EF} = -\vec{FA} = -p
FA=BC=q\vec{FA} = - \vec{BC} = -q
AD=2BCAB=2q+1AB=(2q1p)\vec{AD} = 2\vec{BC} - \vec{AB} = 2q+1\vec{AB}=(2q-1p)
EA=pq\vec{EA} = -p -q
AC=AB+BC=P+q\vec{AC}= \vec{AB} + \vec{BC} = \vec{P} + \vec{q}

3. Final Answer

CD=p\vec{CD} = -p
DE=q\vec{DE} = -q
EF=p\vec{EF} = -p
FA=q\vec{FA} = -q
AD=2qp\vec{AD} = 2q-p
EA=pq\vec{EA} = -p-q
AC=p+q\vec{AC} = p + q

Related problems in "Geometry"

The problem consists of two parts: (a) A window is in the shape of a semi-circle with radius 70 cm. ...

CircleSemi-circlePerimeterBase ConversionNumber Systems
2025/6/11

The problem asks us to find the volume of a cylindrical litter bin in m³ to 2 decimal places (part a...

VolumeCylinderUnits ConversionProblem Solving
2025/6/10

We are given a triangle $ABC$ with $AB = 6$, $AC = 3$, and $\angle BAC = 120^\circ$. $AD$ is an angl...

TriangleAngle BisectorTrigonometryArea CalculationInradius
2025/6/10

The problem asks to find the values for I, JK, L, M, N, O, PQ, R, S, T, U, V, and W, based on the gi...

Triangle AreaInradiusGeometric Proofs
2025/6/10

In triangle $ABC$, $AB = 6$, $AC = 3$, and $\angle BAC = 120^{\circ}$. $D$ is the intersection of th...

TriangleLaw of CosinesAngle Bisector TheoremExternal Angle Bisector TheoremLength of SidesRatio
2025/6/10

A hunter on top of a tree sees an antelope at an angle of depression of $30^{\circ}$. The height of ...

TrigonometryRight TrianglesAngle of DepressionPythagorean Theorem
2025/6/10

A straight line passes through the points $(3, -2)$ and $(4, 5)$ and intersects the y-axis at $-23$....

Linear EquationsSlopeY-interceptCoordinate Geometry
2025/6/10

The problem states that the size of each interior angle of a regular polygon is $135^\circ$. We need...

PolygonsRegular PolygonsInterior AnglesExterior AnglesRotational Symmetry
2025/6/9

Y is 60 km away from X on a bearing of $135^{\circ}$. Z is 80 km away from X on a bearing of $225^{\...

TrigonometryBearingsCosine RuleRight Triangles
2025/6/8

The cross-section of a railway tunnel is shown. The length of the base $AB$ is 100 m, and the radius...

PerimeterArc LengthCircleRadius
2025/6/8