Given a regular hexagon $ABCDEF$, where $\vec{AB} = \vec{p}$ and $\vec{BC} = \vec{q}$, express the vectors $\vec{CD}$, $\vec{DE}$, $\vec{EF}$, $\vec{FA}$, $\vec{AD}$, $\vec{EA}$, and $\vec{AC}$ in terms of $\vec{p}$ and $\vec{q}$.

GeometryVectorsHexagonGeometric Transformations
2025/3/30

1. Problem Description

Given a regular hexagon ABCDEFABCDEF, where AB=p\vec{AB} = \vec{p} and BC=q\vec{BC} = \vec{q}, express the vectors CD\vec{CD}, DE\vec{DE}, EF\vec{EF}, FA\vec{FA}, AD\vec{AD}, EA\vec{EA}, and AC\vec{AC} in terms of p\vec{p} and q\vec{q}.

2. Solution Steps

In a regular hexagon, all sides have the same length, and all interior angles are equal to 120120^{\circ}.
Also, since ABCDEFABCDEF is a regular hexagon, we know that AB\vec{AB}, BC\vec{BC}, CD\vec{CD}, DE\vec{DE}, EF\vec{EF}, and FA\vec{FA} have the same magnitude.
CD\vec{CD} is parallel to FA\vec{FA} and has the same magnitude. Also CD=AB=p\vec{CD} = -\vec{AB} = -\vec{p}
DE\vec{DE} is parallel to BC\vec{BC} and has the same magnitude. Also DE=BC=q\vec{DE} = -\vec{BC} = -\vec{q}
EF\vec{EF} is parallel to AB\vec{AB} and has the same magnitude. Also EF=CD=p\vec{EF} = -\vec{CD} = \vec{p}
FA\vec{FA} is parallel to CD\vec{CD} and has the same magnitude. Also FA=DE=q\vec{FA} = -\vec{DE} = \vec{q}
Now, consider AD\vec{AD}. Since ABCDEFABCDEF is a regular hexagon, ADAD is twice the length of ABcos(30)=3ABAB\cos(30^{\circ}) = \sqrt{3}AB. But since the hexagon is regular, we can express AD\vec{AD} as the sum of vectors:
AD=AB+BC+CD=p+q+(p)=p+qp=2BC=p+q+EF=p+qCD\vec{AD} = \vec{AB} + \vec{BC} + \vec{CD} = \vec{p} + \vec{q} + (-\vec{p}) = \vec{p} + \vec{q} - \vec{p} = 2\vec{BC} = \vec{p} + \vec{q} + \vec{EF} = \vec{p} + \vec{q} - \vec{CD} But CD\vec{CD} can be expressed as pq+BC-\vec{p} - \vec{q} + \vec{BC}
AD=AB+BC+CD=p+qp=q+FA+...\vec{AD} = \vec{AB} + \vec{BC} + \vec{CD} = \vec{p} + \vec{q} - \vec{p} = \vec{q} + \vec{FA} + ...
Since ABCDEFABCDEF is a regular hexagon, AD=2BC+20=BC+BC\vec{AD} = 2\vec{BC} + 2\vec{0}= \vec{BC}+ \vec{BC} , so we can derive that AD=BCCD\vec{AD} = \vec{BC} - \vec{CD}. We also have FA=BC\vec{FA} = \vec{BC} so FA=q\vec{FA} = \vec{q}.
Since ADAD is made up of two parallel vectors of length AB=pAB = p, We can assume that it equals to AD=2BCAD =2\vec{BC} because this creates a parrallelogram. Thus AD=AB+BC+CD\vec{AD} = \vec{AB} + \vec{BC} + \vec{CD}
AD=2BC+(CD)=p+q+DE=pq\vec{AD} = 2\vec{BC} + (\vec{CD}) = \vec{p} + \vec{q} + \vec{DE}= \vec{p} - \vec{q}
AD=AB+BC+CD=p+qpBC\vec{AD} = \vec{AB} + \vec{BC} + \vec{CD} = \vec{p} + \vec{q} - \vec{p} - \vec{BC}
We know that the coordinates of a regular hexagon can be thought of as composed of 6 equliateral triangles.
Also, AD\vec{AD} is 2BC2\vec{BC} because of congruent triangles and similar vector transformations. Thus, AD=p+qp=2BC\vec{AD} = \vec{p}+\vec{q}-\vec{p} = 2\vec{BC}.
Then AD=p+qEF\vec{AD} = \vec{p} + \vec{q} -\vec{EF} where EF=p\vec{EF} = p. So we know from geometry or using AD=2(BC)=2qAD = 2(BC) = \vec{2q}
EA=AE\vec{EA} = -\vec{AE}. We have AE=AD+DE=2BC+DE=2qq=q\vec{AE} = \vec{AD} + \vec{DE} = 2\vec{BC} + \vec{DE} = 2\vec{q}-\vec{q} = \vec{q}. Therefore, EA=q\vec{EA} = -\vec{q}
Finally, AC=AB+BC=p+q\vec{AC} = \vec{AB} + \vec{BC} = \vec{p} + \vec{q}.

3. Final Answer

CD=p\vec{CD} = -\vec{p}
DE=q\vec{DE} = -\vec{q}
EF=p\vec{EF} = \vec{p}
FA=q\vec{FA} = \vec{q}
AD=2q\vec{AD} = 2\vec{q}
EA=q\vec{EA} = -\vec{q}
AC=p+q\vec{AC} = \vec{p} + \vec{q}

Related problems in "Geometry"

Point P moves on the circle $(x-6)^2 + y^2 = 9$. Find the locus of point Q which divides the line se...

LocusCirclesCoordinate Geometry
2025/6/12

We are given three points $A(5, 2)$, $B(-1, 0)$, and $C(3, -2)$. (1) We need to find the equation of...

CircleCircumcircleEquation of a CircleCoordinate GeometryCircumcenterRadius
2025/6/12

The problem consists of two parts: (a) A window is in the shape of a semi-circle with radius 70 cm. ...

CircleSemi-circlePerimeterBase ConversionNumber Systems
2025/6/11

The problem asks us to find the volume of a cylindrical litter bin in m³ to 2 decimal places (part a...

VolumeCylinderUnits ConversionProblem Solving
2025/6/10

We are given a triangle $ABC$ with $AB = 6$, $AC = 3$, and $\angle BAC = 120^\circ$. $AD$ is an angl...

TriangleAngle BisectorTrigonometryArea CalculationInradius
2025/6/10

The problem asks to find the values for I, JK, L, M, N, O, PQ, R, S, T, U, V, and W, based on the gi...

Triangle AreaInradiusGeometric Proofs
2025/6/10

In triangle $ABC$, $AB = 6$, $AC = 3$, and $\angle BAC = 120^{\circ}$. $D$ is the intersection of th...

TriangleLaw of CosinesAngle Bisector TheoremExternal Angle Bisector TheoremLength of SidesRatio
2025/6/10

A hunter on top of a tree sees an antelope at an angle of depression of $30^{\circ}$. The height of ...

TrigonometryRight TrianglesAngle of DepressionPythagorean Theorem
2025/6/10

A straight line passes through the points $(3, -2)$ and $(4, 5)$ and intersects the y-axis at $-23$....

Linear EquationsSlopeY-interceptCoordinate Geometry
2025/6/10

The problem states that the size of each interior angle of a regular polygon is $135^\circ$. We need...

PolygonsRegular PolygonsInterior AnglesExterior AnglesRotational Symmetry
2025/6/9