Given three vectors $\vec{u} = i + 2j - k$, $\vec{v} = 2i - j + 2k$, and $\vec{w} = 3i - 4j - 5k$. (1) Find the coordinates of the vector $\vec{u} + \vec{v} + \vec{w}$. Show that $\vec{w}$ is orthogonal to $\vec{u}$ and $\vec{v}$. (2) Show that $\vec{w} = \vec{u} \times \vec{v}$. Find a unit vector that is orthogonal to both $\vec{u}$ and $\vec{v}$.

GeometryVectorsDot ProductCross ProductOrthogonalityUnit Vector
2025/3/31

1. Problem Description

Given three vectors u=i+2jk\vec{u} = i + 2j - k, v=2ij+2k\vec{v} = 2i - j + 2k, and w=3i4j5k\vec{w} = 3i - 4j - 5k.
(1) Find the coordinates of the vector u+v+w\vec{u} + \vec{v} + \vec{w}. Show that w\vec{w} is orthogonal to u\vec{u} and v\vec{v}.
(2) Show that w=u×v\vec{w} = \vec{u} \times \vec{v}. Find a unit vector that is orthogonal to both u\vec{u} and v\vec{v}.

2. Solution Steps

(1) We first find the vector u+v+w\vec{u} + \vec{v} + \vec{w}.
u+v+w=(i+2jk)+(2ij+2k)+(3i4j5k)=(1+2+3)i+(214)j+(1+25)k=6i3j4k\vec{u} + \vec{v} + \vec{w} = (i + 2j - k) + (2i - j + 2k) + (3i - 4j - 5k) = (1+2+3)i + (2-1-4)j + (-1+2-5)k = 6i - 3j - 4k.
So, the coordinates of u+v+w\vec{u} + \vec{v} + \vec{w} are (6,3,4)(6, -3, -4).
Next, we show that w\vec{w} is orthogonal to u\vec{u} and v\vec{v}. Two vectors are orthogonal if their dot product is zero.
uw=(1)(3)+(2)(4)+(1)(5)=38+5=0\vec{u} \cdot \vec{w} = (1)(3) + (2)(-4) + (-1)(-5) = 3 - 8 + 5 = 0.
vw=(2)(3)+(1)(4)+(2)(5)=6+410=0\vec{v} \cdot \vec{w} = (2)(3) + (-1)(-4) + (2)(-5) = 6 + 4 - 10 = 0.
Since uw=0\vec{u} \cdot \vec{w} = 0 and vw=0\vec{v} \cdot \vec{w} = 0, w\vec{w} is orthogonal to u\vec{u} and v\vec{v}.
(2) We want to show that w=u×v\vec{w} = \vec{u} \times \vec{v}.
u×v=ijk121212=i(2(2)(1)(1))j(1(2)(1)(2))+k(1(1)2(2))=i(41)j(2+2)+k(14)=3i4j5k=w\vec{u} \times \vec{v} = \begin{vmatrix} i & j & k \\ 1 & 2 & -1 \\ 2 & -1 & 2 \end{vmatrix} = i(2(2) - (-1)(-1)) - j(1(2) - (-1)(2)) + k(1(-1) - 2(2)) = i(4 - 1) - j(2 + 2) + k(-1 - 4) = 3i - 4j - 5k = \vec{w}.
Thus, w=u×v\vec{w} = \vec{u} \times \vec{v}.
We want to find a unit vector that is orthogonal to both u\vec{u} and v\vec{v}. The cross product u×v\vec{u} \times \vec{v} is orthogonal to both u\vec{u} and v\vec{v}, so we need to find a unit vector in the direction of w\vec{w}.
The magnitude of w\vec{w} is w=32+(4)2+(5)2=9+16+25=50=52||\vec{w}|| = \sqrt{3^2 + (-4)^2 + (-5)^2} = \sqrt{9 + 16 + 25} = \sqrt{50} = 5\sqrt{2}.
The unit vector w^\hat{w} is given by w^=ww=3i4j5k52=352i452j552k=3210i4210j22k\hat{w} = \frac{\vec{w}}{||\vec{w}||} = \frac{3i - 4j - 5k}{5\sqrt{2}} = \frac{3}{5\sqrt{2}}i - \frac{4}{5\sqrt{2}}j - \frac{5}{5\sqrt{2}}k = \frac{3\sqrt{2}}{10}i - \frac{4\sqrt{2}}{10}j - \frac{\sqrt{2}}{2}k.
So, the unit vector is (3210,4210,22)(\frac{3\sqrt{2}}{10}, -\frac{4\sqrt{2}}{10}, -\frac{\sqrt{2}}{2}).

3. Final Answer

(1) The coordinates of u+v+w\vec{u} + \vec{v} + \vec{w} are (6,3,4)(6, -3, -4). w\vec{w} is orthogonal to u\vec{u} and v\vec{v}.
(2) w=u×v\vec{w} = \vec{u} \times \vec{v}. The unit vector orthogonal to u\vec{u} and v\vec{v} is (3210,4210,22)(\frac{3\sqrt{2}}{10}, -\frac{4\sqrt{2}}{10}, -\frac{\sqrt{2}}{2}).

Related problems in "Geometry"

The problem consists of two parts: (a) A window is in the shape of a semi-circle with radius 70 cm. ...

CircleSemi-circlePerimeterBase ConversionNumber Systems
2025/6/11

The problem asks us to find the volume of a cylindrical litter bin in m³ to 2 decimal places (part a...

VolumeCylinderUnits ConversionProblem Solving
2025/6/10

We are given a triangle $ABC$ with $AB = 6$, $AC = 3$, and $\angle BAC = 120^\circ$. $AD$ is an angl...

TriangleAngle BisectorTrigonometryArea CalculationInradius
2025/6/10

The problem asks to find the values for I, JK, L, M, N, O, PQ, R, S, T, U, V, and W, based on the gi...

Triangle AreaInradiusGeometric Proofs
2025/6/10

In triangle $ABC$, $AB = 6$, $AC = 3$, and $\angle BAC = 120^{\circ}$. $D$ is the intersection of th...

TriangleLaw of CosinesAngle Bisector TheoremExternal Angle Bisector TheoremLength of SidesRatio
2025/6/10

A hunter on top of a tree sees an antelope at an angle of depression of $30^{\circ}$. The height of ...

TrigonometryRight TrianglesAngle of DepressionPythagorean Theorem
2025/6/10

A straight line passes through the points $(3, -2)$ and $(4, 5)$ and intersects the y-axis at $-23$....

Linear EquationsSlopeY-interceptCoordinate Geometry
2025/6/10

The problem states that the size of each interior angle of a regular polygon is $135^\circ$. We need...

PolygonsRegular PolygonsInterior AnglesExterior AnglesRotational Symmetry
2025/6/9

Y is 60 km away from X on a bearing of $135^{\circ}$. Z is 80 km away from X on a bearing of $225^{\...

TrigonometryBearingsCosine RuleRight Triangles
2025/6/8

The cross-section of a railway tunnel is shown. The length of the base $AB$ is 100 m, and the radius...

PerimeterArc LengthCircleRadius
2025/6/8