Given a parallelogram $ABCD$. Point $E$ is on the line $BC$ such that $B$ is the midpoint of the segment $CE$. Given $\vec{AB} = p$ and $\vec{AC} = q$, find the following vectors: $\vec{BC}$, $\vec{CD}$, $\vec{DA}$, $\vec{BD}$, $\vec{AE}$, $\vec{CE}$, and $\vec{DE}$.

GeometryVectorsParallelogramVector AdditionVector SubtractionMidpoint
2025/3/31

1. Problem Description

Given a parallelogram ABCDABCD. Point EE is on the line BCBC such that BB is the midpoint of the segment CECE. Given AB=p\vec{AB} = p and AC=q\vec{AC} = q, find the following vectors: BC\vec{BC}, CD\vec{CD}, DA\vec{DA}, BD\vec{BD}, AE\vec{AE}, CE\vec{CE}, and DE\vec{DE}.

2. Solution Steps

First, since ABCDABCD is a parallelogram, we have AB=DC=p\vec{AB} = \vec{DC} = p and AD=BC\vec{AD} = \vec{BC}.
Also AC=AB+BC\vec{AC} = \vec{AB} + \vec{BC}, so BC=ACAB=qp\vec{BC} = \vec{AC} - \vec{AB} = q - p.
Since AD=BC\vec{AD} = \vec{BC}, we have AD=qp\vec{AD} = q - p.
Also, CD=AB=p\vec{CD} = -\vec{AB} = -p.
Then, DA=AD=(qp)=pq\vec{DA} = -\vec{AD} = -(q - p) = p - q.
We have BD=BA+AD=AB+AD=p+(qp)=q2p\vec{BD} = \vec{BA} + \vec{AD} = -\vec{AB} + \vec{AD} = -p + (q - p) = q - 2p.
Since BB is the midpoint of CECE, we have BC=BE=qp\vec{BC} = \vec{BE} = q - p. Thus CE=2BC=2(qp)=2q2p\vec{CE} = 2\vec{BC} = 2(q - p) = 2q - 2p.
We have AE=AC+CE=q+(2q2p)=3q2p\vec{AE} = \vec{AC} + \vec{CE} = q + (2q - 2p) = 3q - 2p.
Finally, DE=DC+CE=p+(2q2p)=2qp\vec{DE} = \vec{DC} + \vec{CE} = p + (2q - 2p) = 2q - p.

3. Final Answer

BC=qp\vec{BC} = q - p
CD=p\vec{CD} = -p
DA=pq\vec{DA} = p - q
BD=q2p\vec{BD} = q - 2p
AE=3q2p\vec{AE} = 3q - 2p
CE=2q2p\vec{CE} = 2q - 2p
DE=2qp\vec{DE} = 2q - p

Related problems in "Geometry"

The problem asks us to find the volume of a cylindrical litter bin in m³ to 2 decimal places (part a...

VolumeCylinderUnits ConversionProblem Solving
2025/6/10

We are given a triangle $ABC$ with $AB = 6$, $AC = 3$, and $\angle BAC = 120^\circ$. $AD$ is an angl...

TriangleAngle BisectorTrigonometryArea CalculationInradius
2025/6/10

The problem asks to find the values for I, JK, L, M, N, O, PQ, R, S, T, U, V, and W, based on the gi...

Triangle AreaInradiusGeometric Proofs
2025/6/10

In triangle $ABC$, $AB = 6$, $AC = 3$, and $\angle BAC = 120^{\circ}$. $D$ is the intersection of th...

TriangleLaw of CosinesAngle Bisector TheoremExternal Angle Bisector TheoremLength of SidesRatio
2025/6/10

A hunter on top of a tree sees an antelope at an angle of depression of $30^{\circ}$. The height of ...

TrigonometryRight TrianglesAngle of DepressionPythagorean Theorem
2025/6/10

A straight line passes through the points $(3, -2)$ and $(4, 5)$ and intersects the y-axis at $-23$....

Linear EquationsSlopeY-interceptCoordinate Geometry
2025/6/10

The problem states that the size of each interior angle of a regular polygon is $135^\circ$. We need...

PolygonsRegular PolygonsInterior AnglesExterior AnglesRotational Symmetry
2025/6/9

Y is 60 km away from X on a bearing of $135^{\circ}$. Z is 80 km away from X on a bearing of $225^{\...

TrigonometryBearingsCosine RuleRight Triangles
2025/6/8

The cross-section of a railway tunnel is shown. The length of the base $AB$ is 100 m, and the radius...

PerimeterArc LengthCircleRadius
2025/6/8

We are given a quadrilateral ABCD with the following angle measures: $\angle ABC = 14^{\circ}$, $\an...

QuadrilateralAnglesAngle SumReflex Angle
2025/6/8