We are given three exponential equations to solve: (ii) $2^{2y+1} - 15(2^y) = 8$ (iii) $2^{x+3} - 15 = 2^{1-x}$ (v) $3^{2x} - 3^{x+2} = 3^{1+x} - 27$

AlgebraExponential EquationsQuadratic EquationsSubstitutionSolving Equations
2025/3/10

1. Problem Description

We are given three exponential equations to solve:
(ii) 22y+115(2y)=82^{2y+1} - 15(2^y) = 8
(iii) 2x+315=21x2^{x+3} - 15 = 2^{1-x}
(v) 32x3x+2=31+x273^{2x} - 3^{x+2} = 3^{1+x} - 27

2. Solution Steps

(ii) 22y+115(2y)=82^{2y+1} - 15(2^y) = 8
We can rewrite the equation as:
2(2y)215(2y)8=02 \cdot (2^y)^2 - 15(2^y) - 8 = 0
Let z=2yz = 2^y. Then the equation becomes:
2z215z8=02z^2 - 15z - 8 = 0
We can factor this quadratic equation:
(2z+1)(z8)=0(2z+1)(z-8) = 0
So, 2z+1=02z+1 = 0 or z8=0z-8 = 0.
If 2z+1=02z+1 = 0, then z=12z = -\frac{1}{2}. Since z=2yz = 2^y, we have 2y=122^y = -\frac{1}{2}. However, 2y2^y must be positive, so this case has no solution.
If z8=0z-8 = 0, then z=8z = 8. So, 2y=8=232^y = 8 = 2^3. Therefore, y=3y = 3.
(iii) 2x+315=21x2^{x+3} - 15 = 2^{1-x}
2x2315=212x2^x \cdot 2^3 - 15 = 2^1 \cdot 2^{-x}
82x15=22x8 \cdot 2^x - 15 = \frac{2}{2^x}
Let z=2xz = 2^x. Then the equation becomes:
8z15=2z8z - 15 = \frac{2}{z}
Multiplying by zz, we get:
8z215z=28z^2 - 15z = 2
8z215z2=08z^2 - 15z - 2 = 0
We can factor this quadratic equation:
(8z+1)(z2)=0(8z+1)(z-2) = 0
So, 8z+1=08z+1 = 0 or z2=0z-2 = 0.
If 8z+1=08z+1 = 0, then z=18z = -\frac{1}{8}. Since z=2xz = 2^x, we have 2x=182^x = -\frac{1}{8}. However, 2x2^x must be positive, so this case has no solution.
If z2=0z-2 = 0, then z=2z = 2. So, 2x=2=212^x = 2 = 2^1. Therefore, x=1x = 1.
(v) 32x3x+2=31+x273^{2x} - 3^{x+2} = 3^{1+x} - 27
(3x)23x32=33x27(3^x)^2 - 3^x \cdot 3^2 = 3 \cdot 3^x - 27
(3x)293x=33x27(3^x)^2 - 9 \cdot 3^x = 3 \cdot 3^x - 27
Let z=3xz = 3^x. Then the equation becomes:
z29z=3z27z^2 - 9z = 3z - 27
z212z+27=0z^2 - 12z + 27 = 0
We can factor this quadratic equation:
(z3)(z9)=0(z-3)(z-9) = 0
So, z3=0z-3 = 0 or z9=0z-9 = 0.
If z3=0z-3 = 0, then z=3z = 3. So, 3x=3=313^x = 3 = 3^1. Therefore, x=1x = 1.
If z9=0z-9 = 0, then z=9z = 9. So, 3x=9=323^x = 9 = 3^2. Therefore, x=2x = 2.
Thus, x=1x = 1 or x=2x = 2.

3. Final Answer

y=3y = 3
x=1x = 1
x=1,2x = 1, 2