(ii) 22y+1−15(2y)=8 We can rewrite the equation as:
2⋅(2y)2−15(2y)−8=0 Let z=2y. Then the equation becomes: 2z2−15z−8=0 We can factor this quadratic equation:
(2z+1)(z−8)=0 So, 2z+1=0 or z−8=0. If 2z+1=0, then z=−21. Since z=2y, we have 2y=−21. However, 2y must be positive, so this case has no solution. If z−8=0, then z=8. So, 2y=8=23. Therefore, y=3. (iii) 2x+3−15=21−x 2x⋅23−15=21⋅2−x 8⋅2x−15=2x2 Let z=2x. Then the equation becomes: 8z−15=z2 Multiplying by z, we get: 8z2−15z=2 8z2−15z−2=0 We can factor this quadratic equation:
(8z+1)(z−2)=0 So, 8z+1=0 or z−2=0. If 8z+1=0, then z=−81. Since z=2x, we have 2x=−81. However, 2x must be positive, so this case has no solution. If z−2=0, then z=2. So, 2x=2=21. Therefore, x=1. (v) 32x−3x+2=31+x−27 (3x)2−3x⋅32=3⋅3x−27 (3x)2−9⋅3x=3⋅3x−27 Let z=3x. Then the equation becomes: z2−9z=3z−27 z2−12z+27=0 We can factor this quadratic equation:
(z−3)(z−9)=0 So, z−3=0 or z−9=0. If z−3=0, then z=3. So, 3x=3=31. Therefore, x=1. If z−9=0, then z=9. So, 3x=9=32. Therefore, x=2. Thus, x=1 or x=2.