We are given three vectors: $s = -i + 2j$, $t = 3i - j$, and $r = 2i + 5j$. We are asked to find the following: (a) $s + t$ (b) $r - s$ (c) $2t + r$ (d) $3s + 2r$ (e) $\frac{1}{2}(2t - r)$

Applied MathematicsVectorsVector AdditionVector SubtractionScalar Multiplication
2025/7/2

1. Problem Description

We are given three vectors: s=i+2js = -i + 2j, t=3ijt = 3i - j, and r=2i+5jr = 2i + 5j. We are asked to find the following:
(a) s+ts + t
(b) rsr - s
(c) 2t+r2t + r
(d) 3s+2r3s + 2r
(e) 12(2tr)\frac{1}{2}(2t - r)

2. Solution Steps

(a) s+t=(i+2j)+(3ij)=(1+3)i+(21)j=2i+js + t = (-i + 2j) + (3i - j) = (-1+3)i + (2-1)j = 2i + j
(b) rs=(2i+5j)(i+2j)=(2(1))i+(52)j=(2+1)i+3j=3i+3jr - s = (2i + 5j) - (-i + 2j) = (2 - (-1))i + (5 - 2)j = (2+1)i + 3j = 3i + 3j
(c) 2t+r=2(3ij)+(2i+5j)=(6i2j)+(2i+5j)=(6+2)i+(2+5)j=8i+3j2t + r = 2(3i - j) + (2i + 5j) = (6i - 2j) + (2i + 5j) = (6+2)i + (-2+5)j = 8i + 3j
(d) 3s+2r=3(i+2j)+2(2i+5j)=(3i+6j)+(4i+10j)=(3+4)i+(6+10)j=i+16j3s + 2r = 3(-i + 2j) + 2(2i + 5j) = (-3i + 6j) + (4i + 10j) = (-3+4)i + (6+10)j = i + 16j
(e) 12(2tr)=12(2(3ij)(2i+5j))=12((6i2j)(2i+5j))=12((62)i+(25)j)=12(4i7j)=2i72j\frac{1}{2}(2t - r) = \frac{1}{2}(2(3i - j) - (2i + 5j)) = \frac{1}{2}((6i - 2j) - (2i + 5j)) = \frac{1}{2}((6-2)i + (-2-5)j) = \frac{1}{2}(4i - 7j) = 2i - \frac{7}{2}j

3. Final Answer

(a) s+t=2i+js + t = 2i + j
(b) rs=3i+3jr - s = 3i + 3j
(c) 2t+r=8i+3j2t + r = 8i + 3j
(d) 3s+2r=i+16j3s + 2r = i + 16j
(e) 12(2tr)=2i72j\frac{1}{2}(2t - r) = 2i - \frac{7}{2}j

Related problems in "Applied Mathematics"

The problem asks to find the current through the resistor $R_2$ (which has a resistance of 6 $\Omega...

Circuit AnalysisSuperposition TheoremResistorsCurrent Divider RuleOhm's Law
2025/7/2

A family has installed a wind turbine. The problem provides the rated power output, product life, an...

Energy CalculationCost AnalysisFinancial ModelingUnits Conversion
2025/7/2

The problem describes a radially slotted arm whose rotation is governed by $\theta = 0.2t + 0.02t^2$...

KinematicsPolar CoordinatesDerivativesVelocityAccelerationEngineering Mechanics
2025/7/1

The problem describes a Cournot duopoly with two firms, Boors and Cudweiser, selling identical nonal...

MicroeconomicsDuopolyCournot ModelOptimizationMarket Equilibrium
2025/7/1

The problem describes a production function for coffee $C = min(B, W)$, where $B$ is coffee beans in...

OptimizationProduction FunctionMicroeconomicsCost Minimization
2025/7/1

The problem states that domestic beef producers face a demand of $QD = 1000 - 5P$. The Chinese then ...

Demand FunctionMarket EquilibriumLinear EquationsEconomics
2025/7/1

The problem describes a monopolist with a given total cost function $TC = Q^2 + 10Q + 100$, a margin...

MicroeconomicsMonopolyProfit MaximizationMarginal CostMarginal RevenueDemand FunctionTotal Cost
2025/7/1

The problem states that a farmer is a price taker for soybean sales. The total cost function is give...

OptimizationMicroeconomicsMarginal CostProfit MaximizationCalculus
2025/7/1

The problem gives a production function $q = K^{1/2} L^{1/3}$, where $q$ is the quantity of output, ...

Production FunctionMarginal CostCalculusOptimizationEconomics
2025/7/1

The problem states that a production function is given by $Q = K^a L^b$, where $K$ is capital and $L...

Production FunctionReturns to ScaleEconomicsExponents
2025/7/1