The problem asks to evaluate several natural logarithm expressions. The expressions are: 1. $ln(\frac{1}{e^9})$

AnalysisLogarithmsNatural LogarithmExponentsLogarithmic Properties
2025/7/3

1. Problem Description

The problem asks to evaluate several natural logarithm expressions. The expressions are:

1. $ln(\frac{1}{e^9})$

2. $ln(\sqrt[3]{e^2})$

3. $ln(e)$

4. $ln(\frac{1}{e})$

5. $ln(e^4)$

6. $ln(\sqrt{e})$

7. $ln(\frac{1}{\sqrt{e^9}})$

2. Solution Steps

We will use the following properties of logarithms:
* ln(ex)=xln(e^x) = x
* ln(1x)=ln(x)ln(\frac{1}{x}) = -ln(x)
* ln(xa)=aln(x)ln(x^a) = a \cdot ln(x)
* xn=x1n\sqrt[n]{x} = x^{\frac{1}{n}}

1. $ln(\frac{1}{e^9}) = ln(e^{-9}) = -9$

2. $ln(\sqrt[3]{e^2}) = ln((e^2)^{\frac{1}{3}}) = ln(e^{\frac{2}{3}}) = \frac{2}{3}$

3. $ln(e) = ln(e^1) = 1$

4. $ln(\frac{1}{e}) = ln(e^{-1}) = -1$

5. $ln(e^4) = 4$

6. $ln(\sqrt{e}) = ln(e^{\frac{1}{2}}) = \frac{1}{2}$

7. $ln(\frac{1}{\sqrt{e^9}}) = ln(\frac{1}{(e^9)^{\frac{1}{2}}}) = ln(\frac{1}{e^{\frac{9}{2}}}) = ln(e^{-\frac{9}{2}}) = -\frac{9}{2}$

3. Final Answer

1. $ln(\frac{1}{e^9}) = -9$

2. $ln(\sqrt[3]{e^2}) = \frac{2}{3}$

3. $ln(e) = 1$

4. $ln(\frac{1}{e}) = -1$

5. $ln(e^4) = 4$

6. $ln(\sqrt{e}) = \frac{1}{2}$

7. $ln(\frac{1}{\sqrt{e^9}}) = -\frac{9}{2}$

Related problems in "Analysis"

The problem asks us to sketch the graphs of two functions: (1) $y = x\sqrt{4-x^2}$ (2) $y = e^{-x} +...

GraphingCalculusDerivativesMaxima and MinimaConcavityInflection PointsDomainSymmetry
2025/7/3

The problem asks to sketch the graph of the function $y = x\sqrt{4 - x^2}$.

CalculusFunction AnalysisDerivativesGraphingDomainCritical PointsLocal Maxima/MinimaOdd Functions
2025/7/3

We are asked to find the sum of the series $\frac{1}{2^2-1} + \frac{1}{4^2-1} + \frac{1}{6^2-1} + \d...

SeriesSummationPartial FractionsTelescoping Series
2025/7/3

The problem requires us to analyze a given graph of a function and determine the following: - The in...

Function AnalysisIncreasing and Decreasing IntervalsDomain and Range
2025/7/3

We are given a graph of a function and asked to find the intervals where the function is increasing,...

Function AnalysisIntervalsIncreasing/Decreasing/ConstantDomainRangeGraph Interpretation
2025/7/3

The problem asks us to identify the intervals where the given function is increasing and decreasing,...

Function AnalysisIncreasing and Decreasing IntervalsDomainGraph Interpretation
2025/7/3

The problem asks us to determine the intervals where the given function is increasing and decreasing...

Function AnalysisIncreasing and Decreasing IntervalsDomainGraphing
2025/7/3

The problem asks us to identify the interval on which the given function is decreasing. The x-coordi...

Function AnalysisDecreasing FunctionIntervalGraphing
2025/7/3

The problem asks us to determine the intervals on which the given function is increasing and decreas...

Increasing and Decreasing FunctionsCalculusIntervalsDerivatives (implicitly)
2025/7/3

The problem asks us to draw the tangent line to the curve $y = 3x^5 - 5x^4$ at the inflection point ...

CalculusDerivativesTangent LinesInflection PointsCurve Analysis
2025/6/29