We are asked to find the sum of the series $\frac{1}{2^2-1} + \frac{1}{4^2-1} + \frac{1}{6^2-1} + \dots + \frac{1}{(2n)^2-1}$.

AnalysisSeriesSummationPartial FractionsTelescoping Series
2025/7/3

1. Problem Description

We are asked to find the sum of the series
1221+1421+1621++1(2n)21\frac{1}{2^2-1} + \frac{1}{4^2-1} + \frac{1}{6^2-1} + \dots + \frac{1}{(2n)^2-1}.

2. Solution Steps

The general term of the series is given by
ak=1(2k)21=14k21=1(2k1)(2k+1)a_k = \frac{1}{(2k)^2 - 1} = \frac{1}{4k^2 - 1} = \frac{1}{(2k-1)(2k+1)}.
We can use partial fraction decomposition to rewrite the general term:
1(2k1)(2k+1)=A2k1+B2k+1\frac{1}{(2k-1)(2k+1)} = \frac{A}{2k-1} + \frac{B}{2k+1}
1=A(2k+1)+B(2k1)1 = A(2k+1) + B(2k-1)
To find AA, let 2k1=02k-1 = 0, so k=12k = \frac{1}{2}. Then,
1=A(2(12)+1)+B(0)1 = A(2(\frac{1}{2}) + 1) + B(0)
1=2A1 = 2A
A=12A = \frac{1}{2}
To find BB, let 2k+1=02k+1 = 0, so k=12k = -\frac{1}{2}. Then,
1=A(0)+B(2(12)1)1 = A(0) + B(2(-\frac{1}{2}) - 1)
1=2B1 = -2B
B=12B = -\frac{1}{2}
So, ak=12(12k112k+1)a_k = \frac{1}{2} (\frac{1}{2k-1} - \frac{1}{2k+1}).
Now, we want to find the sum Sn=k=1nakS_n = \sum_{k=1}^{n} a_k:
Sn=k=1n12(12k112k+1)S_n = \sum_{k=1}^{n} \frac{1}{2} (\frac{1}{2k-1} - \frac{1}{2k+1})
Sn=12k=1n(12k112k+1)S_n = \frac{1}{2} \sum_{k=1}^{n} (\frac{1}{2k-1} - \frac{1}{2k+1})
Sn=12[(1113)+(1315)+(1517)++(12n112n+1)]S_n = \frac{1}{2} [(\frac{1}{1} - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{5}) + (\frac{1}{5} - \frac{1}{7}) + \dots + (\frac{1}{2n-1} - \frac{1}{2n+1})]
This is a telescoping series. All the terms cancel out except for the first and last terms.
Sn=12(112n+1)=12(2n+112n+1)=12(2n2n+1)S_n = \frac{1}{2} (1 - \frac{1}{2n+1}) = \frac{1}{2} (\frac{2n+1-1}{2n+1}) = \frac{1}{2} (\frac{2n}{2n+1})
Sn=n2n+1S_n = \frac{n}{2n+1}

3. Final Answer

n2n+1\frac{n}{2n+1}

Related problems in "Analysis"

The problem asks us to sketch the graphs of two functions: (1) $y = x\sqrt{4-x^2}$ (2) $y = e^{-x} +...

GraphingCalculusDerivativesMaxima and MinimaConcavityInflection PointsDomainSymmetry
2025/7/3

The problem asks to sketch the graph of the function $y = x\sqrt{4 - x^2}$.

CalculusFunction AnalysisDerivativesGraphingDomainCritical PointsLocal Maxima/MinimaOdd Functions
2025/7/3

The problem asks to evaluate several natural logarithm expressions. The expressions are: 1. $ln(\fra...

LogarithmsNatural LogarithmExponentsLogarithmic Properties
2025/7/3

The problem requires us to analyze a given graph of a function and determine the following: - The in...

Function AnalysisIncreasing and Decreasing IntervalsDomain and Range
2025/7/3

We are given a graph of a function and asked to find the intervals where the function is increasing,...

Function AnalysisIntervalsIncreasing/Decreasing/ConstantDomainRangeGraph Interpretation
2025/7/3

The problem asks us to identify the intervals where the given function is increasing and decreasing,...

Function AnalysisIncreasing and Decreasing IntervalsDomainGraph Interpretation
2025/7/3

The problem asks us to determine the intervals where the given function is increasing and decreasing...

Function AnalysisIncreasing and Decreasing IntervalsDomainGraphing
2025/7/3

The problem asks us to identify the interval on which the given function is decreasing. The x-coordi...

Function AnalysisDecreasing FunctionIntervalGraphing
2025/7/3

The problem asks us to determine the intervals on which the given function is increasing and decreas...

Increasing and Decreasing FunctionsCalculusIntervalsDerivatives (implicitly)
2025/7/3

The problem asks us to draw the tangent line to the curve $y = 3x^5 - 5x^4$ at the inflection point ...

CalculusDerivativesTangent LinesInflection PointsCurve Analysis
2025/6/29