The general term of the series is given by
ak=(2k)2−11=4k2−11=(2k−1)(2k+1)1. We can use partial fraction decomposition to rewrite the general term:
(2k−1)(2k+1)1=2k−1A+2k+1B 1=A(2k+1)+B(2k−1) To find A, let 2k−1=0, so k=21. Then, 1=A(2(21)+1)+B(0) To find B, let 2k+1=0, so k=−21. Then, 1=A(0)+B(2(−21)−1) B=−21 So, ak=21(2k−11−2k+11). Now, we want to find the sum Sn=∑k=1nak: Sn=∑k=1n21(2k−11−2k+11) Sn=21∑k=1n(2k−11−2k+11) Sn=21[(11−31)+(31−51)+(51−71)+⋯+(2n−11−2n+11)] This is a telescoping series. All the terms cancel out except for the first and last terms.
Sn=21(1−2n+11)=21(2n+12n+1−1)=21(2n+12n) Sn=2n+1n