In triangle $ABC$, $\angle B = 45^\circ$ and $\angle C = 75^\circ$. $D$ is the intersection of the angle bisector of $\angle A$ and side $BC$. We need to find the ratios $AC:BC$, $AD:BD$, $BD:BC$, $AB:AC$, $\angle AO_1 D$, $\angle AO_2 O_1$, $AC:AO_1$, $AO_2:AO_1$, and $\triangle ABC: \triangle AO_1 O_2$, where $O_1$ is the circumcenter of $\triangle ABD$ and $O_2$ is the circumcenter of $\triangle ADC$.

GeometryTrianglesLaw of SinesAngle BisectorCircumcenterTrigonometryGeometry Ratios
2025/3/31

1. Problem Description

In triangle ABCABC, B=45\angle B = 45^\circ and C=75\angle C = 75^\circ. DD is the intersection of the angle bisector of A\angle A and side BCBC. We need to find the ratios AC:BCAC:BC, AD:BDAD:BD, BD:BCBD:BC, AB:ACAB:AC, AO1D\angle AO_1 D, AO2O1\angle AO_2 O_1, AC:AO1AC:AO_1, AO2:AO1AO_2:AO_1, and ABC:AO1O2\triangle ABC: \triangle AO_1 O_2, where O1O_1 is the circumcenter of ABD\triangle ABD and O2O_2 is the circumcenter of ADC\triangle ADC.

2. Solution Steps

(1)
Using the Law of Sines in ABC\triangle ABC:
ACsinB=BCsinA\frac{AC}{\sin B} = \frac{BC}{\sin A}
A=1804575=60\angle A = 180^\circ - 45^\circ - 75^\circ = 60^\circ
AC=sinBsinABC=sin45sin60BC=1232BC=26BC=63BC=69BC=23BCAC = \frac{\sin B}{\sin A} BC = \frac{\sin 45^\circ}{\sin 60^\circ} BC = \frac{\frac{1}{\sqrt{2}}}{\frac{\sqrt{3}}{2}} BC = \frac{2}{\sqrt{6}} BC = \frac{\sqrt{6}}{3} BC = \sqrt{\frac{6}{9}} BC = \sqrt{\frac{2}{3}} BC
So A=2A = 2 and B=3B = 3.
Using the Law of Sines in ABD\triangle ABD:
ADsinB=BDsin(BAD)\frac{AD}{\sin B} = \frac{BD}{\sin (\angle BAD)}
ADsin45=BDsin30\frac{AD}{\sin 45^\circ} = \frac{BD}{\sin 30^\circ}
AD=sin45sin30BD=1212BD=22BD=2BDAD = \frac{\sin 45^\circ}{\sin 30^\circ} BD = \frac{\frac{1}{\sqrt{2}}}{\frac{1}{2}} BD = \frac{2}{\sqrt{2}} BD = \sqrt{2} BD
So C=2C = 2.
Since ADC=180DACC=1803075=75\angle ADC = 180^\circ - \angle DAC - \angle C = 180^\circ - 30^\circ - 75^\circ = 75^\circ, ADC\triangle ADC is an isosceles triangle, which means AD=ACAD = AC. Thus, ADC=75\angle ADC = 75^\circ, so D=7D = 7 and E=5E = 5.
Since AD=ACAD = AC, we have AC=2BDAC = \sqrt{2} BD.
From AC=23BCAC = \sqrt{\frac{2}{3}} BC, 2BD=23BC\sqrt{2} BD = \sqrt{\frac{2}{3}} BC, so BD=13BC=13BCBD = \sqrt{\frac{1}{3}} BC = \frac{1}{\sqrt{3}} BC.
BD:BC=1:3BD:BC = 1:\sqrt{3}.
So F=1F = 1 and G=3G = 3.
ABsinC=ACsinB\frac{AB}{\sin C} = \frac{AC}{\sin B}
AB=sinCsinBAC=sin75sin45AC=sin(45+30)sin45AC=sin45cos30+cos45sin30sin45AC=(cos30+sin30)AC=(32+12)AC=3+12ACAB = \frac{\sin C}{\sin B} AC = \frac{\sin 75^\circ}{\sin 45^\circ} AC = \frac{\sin(45^\circ + 30^\circ)}{\sin 45^\circ} AC = \frac{\sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ}{\sin 45^\circ} AC = (\cos 30^\circ + \sin 30^\circ) AC = (\frac{\sqrt{3}}{2} + \frac{1}{2}) AC = \frac{\sqrt{3} + 1}{2} AC
AB:AC=1+32:1=1:21+3=1:2(13)(1+3)(13)=1:2(13)13=1:2(13)2=1:(1+3)AB:AC = \frac{1+\sqrt{3}}{2}:1 = 1: \frac{2}{1+\sqrt{3}} = 1 : \frac{2(1-\sqrt{3})}{(1+\sqrt{3})(1-\sqrt{3})} = 1: \frac{2(1-\sqrt{3})}{1-3} = 1: \frac{2(1-\sqrt{3})}{-2} = 1: (-1+\sqrt{3})
AB:AC=1:(31)AB:AC = 1: (\sqrt{3}-1).
So H=1H = 1, I=3I = 3, J=1J = 1.
(2)
Since O1O_1 is the circumcenter of ABD\triangle ABD, AO1D=2B=2(45)=90\angle AO_1 D = 2\angle B = 2(45^\circ) = 90^\circ. So K=9K = 9 and L=0L = 0.
Since O2O_2 is the circumcenter of ADC\triangle ADC, ADC=75\angle ADC = 75^\circ, so AO2C=2(18075)=210\angle AO_2 C = 2(180^\circ - 75^\circ) = 210^\circ, and AO2D=2C=2(75)=150\angle AO_2 D = 2 \angle C = 2(75^\circ) = 150^\circ, since A,O2,D,CA, O_2, D, C lie on the same circle.
O1AD=90\angle O_1 A D = 90^\circ, and O2AD=15\angle O_2 A D = 15^\circ.
Since O1AD=90\angle O_1 A D = 90, then AO1=AD/cos(O1AD)AO_1 = AD / \cos(\angle O_1 A D).
Consider AO1O2\triangle AO_1 O_2. AO2O1=30\angle AO_2 O_1 = 30^\circ
AC=2AO1AC = \sqrt{2}AO_1 so O=2O=2.
AO2=31AO1AO_2 = \sqrt{3}-1 AO_1
Then P=3P = 3, Q=1Q = 1.
The area of ABC=12ABACsinA=12ABACsin60=34ABAC\triangle ABC = \frac{1}{2}AB \cdot AC \cdot \sin A = \frac{1}{2} AB \cdot AC \cdot \sin 60 = \frac{\sqrt{3}}{4} AB \cdot AC
The area of AO1O2=12AO1AO2sin(O1AO2)=12AO1(31)AO1sin(60)=34AO12(31)\triangle AO_1O_2 = \frac{1}{2} AO_1 \cdot AO_2 \cdot \sin(\angle O_1 A O_2) = \frac{1}{2} AO_1 \cdot (\sqrt{3} -1) AO_1 \cdot \sin(60) = \frac{\sqrt{3}}{4}AO_1^2 (\sqrt{3}-1).
Area ABCArea AO1O2=ABAC(31)AO12=3+12AC2/((31)AO12)=(3+1)22AO12/((31)AO12)=(3+1)1/(31)=(1+3)2/(31)=(1+23+3)/2=(4+23)/2=2+3\frac{\text{Area } \triangle ABC}{\text{Area } \triangle AO_1 O_2} = \frac{AB \cdot AC}{(\sqrt{3}-1) AO_1^2} = \frac{\sqrt{3}+1}{2} AC^2 / ( (\sqrt{3}-1)AO_1^2 ) = \frac{(\sqrt{3}+1)}{2}2 AO_1^2 / ( (\sqrt{3}-1)AO_1^2 ) = \frac{(\sqrt{3}+1)}{1} /(\sqrt{3}-1) = (1+\sqrt{3})^2/(3-1) = (1+2\sqrt{3}+3)/2 = (4+2\sqrt{3})/2 = 2+\sqrt{3}
Thus, ABC:AO1O2=(2+3)\triangle ABC : \triangle AO_1 O_2 = (2+\sqrt{3}). R=4R=4, S=2S=2, T=3T=3

3. Final Answer

A = 2
B = 3
C = 2
D = 7
E = 5
F = 1
G = 3
H = 1
I = 3
J = 1
K = 9
L = 0
M = 3
N = 0
O = 2
P = 3
Q = 1
R = 4
S = 2
T = 3

Related problems in "Geometry"

Given points $A(2, 0, 1)$, $B(0, 1, 3)$, and $C(0, 3, 2)$, we need to: a. Plot the points $A$, $B$, ...

Vectors3D GeometryDot ProductSpheresPlanesRight Triangles
2025/4/5

Given the points $A(2,0,1)$, $B(0,1,1)$ and $C(0,3,2)$ in a coordinate system with positive orientat...

Vectors3D GeometryDot ProductSpheresTriangles
2025/4/5

The problem asks to find four inequalities that define the unshaded region $R$ in the given graph.

InequalitiesLinear InequalitiesGraphingCoordinate Geometry
2025/4/4

The image contains two problems. The first problem is a geometry problem where a triangle on a grid ...

GeometryTranslationCoordinate GeometryArithmeticUnit Conversion
2025/4/4

Kyle has drawn triangle $ABC$ on a grid. Holly has started to draw an identical triangle $DEF$. We n...

Coordinate GeometryVectorsTransformationsTriangles
2025/4/4

Millie has some star-shaped tiles. Each edge of a tile is 5 centimeters long. She puts two tiles tog...

PerimeterGeometric ShapesComposite Shapes
2025/4/4

The problem states that a kite has a center diagonal of 33 inches and an area of 95 square inches. W...

KiteAreaDiagonalsGeometric FormulasRounding
2025/4/4

The problem states that a kite has a diagonal of length 33 inches. The area of the kite is 9 square ...

KiteAreaDiagonalsFormulaSolving EquationsRounding
2025/4/4

A kite has one diagonal measuring 33 inches. The area of the kite is 69 square inches. We need to fi...

KiteAreaGeometric Formulas
2025/4/4

The problem asks to find the area of a shape, which could be a parallelogram, trapezoid, rhombus, or...

AreaRhombusKiteDiagonalsGeometric Shapes
2025/4/4