We are given that $AD \cong AE$, $BA || CE$, $CB || DA$, and $m\angle DAE = 54^\circ$. We need to find $m\angle BCD$.

GeometryParallelogramAnglesIsosceles TriangleSupplementary Angles
2025/3/10

1. Problem Description

We are given that ADAEAD \cong AE, BACEBA || CE, CBDACB || DA, and mDAE=54m\angle DAE = 54^\circ. We need to find mBCDm\angle BCD.

2. Solution Steps

Since ADAEAD \cong AE, triangle ADEADE is an isosceles triangle. Therefore, ADE=AED\angle ADE = \angle AED.
The sum of the angles in a triangle is 180180^\circ. Thus, in ADE\triangle ADE, we have
mDAE+mADE+mAED=180m\angle DAE + m\angle ADE + m\angle AED = 180^\circ
54+mADE+mADE=18054^\circ + m\angle ADE + m\angle ADE = 180^\circ
2mADE=18054=1262 \cdot m\angle ADE = 180^\circ - 54^\circ = 126^\circ
mADE=1262=63m\angle ADE = \frac{126^\circ}{2} = 63^\circ
Since CBDACB || DA, CDE\angle CDE and ADE\angle ADE are supplementary.
Therefore, mCDE+mADE=180m\angle CDE + m\angle ADE = 180^\circ
mCDE=180mADE=18063=117m\angle CDE = 180^\circ - m\angle ADE = 180^\circ - 63^\circ = 117^\circ
Since BACEBA || CE, ABC\angle ABC and BCE\angle BCE are supplementary. Also, CBDACB || DA, so ABCDABCD is a parallelogram. Thus, BCD=BAD\angle BCD = \angle BAD.
Since BACEBA || CE and CBDACB || DA, the quadrilateral ABCDABCD is a parallelogram. Thus, opposite angles are equal, so BCD=BAD\angle BCD = \angle BAD. Also, consecutive angles are supplementary, so ABC+BCD=180\angle ABC + \angle BCD = 180^\circ.
Since CBDACB || DA, mADC+mBCD=180m\angle ADC + m\angle BCD = 180^\circ.
Since BACEBA || CE, mABC+mBCE=180m\angle ABC + m\angle BCE = 180^\circ.
Since CBDACB || DA, CDA\angle CDA and BCD\angle BCD are supplementary, so mCDA+mBCD=180m\angle CDA + m\angle BCD = 180^\circ. Also, ADC\angle ADC and ADE\angle ADE are supplementary, and we know mADE=63m\angle ADE = 63^\circ. Therefore, mADC=18063=117m\angle ADC = 180^\circ - 63^\circ = 117^\circ. So we have 117+mBCD=180117^\circ + m\angle BCD = 180^\circ, and mBCD=180117=63m\angle BCD = 180^\circ - 117^\circ = 63^\circ.
Consider the quadrilateral ABCDABCD. Since BACEBA || CE and CBDACB || DA, ABCDABCD is a parallelogram. Opposite angles are equal, so BCD=DAB\angle BCD = \angle DAB. We are given DAE=54\angle DAE = 54^\circ.
Since DACBDA || CB, mBCD+mCDA=180m\angle BCD + m\angle CDA = 180^\circ.
Also, ADC+ADE=180\angle ADC + \angle ADE = 180^\circ.
We have ADE=63\angle ADE = 63^\circ, so ADC=18063=117\angle ADC = 180^\circ - 63^\circ = 117^\circ.
Then mBCD+117=180m\angle BCD + 117^\circ = 180^\circ, so mBCD=180117=63m\angle BCD = 180^\circ - 117^\circ = 63^\circ.
Since ABCDABCD is a parallelogram, BAD=BCD\angle BAD = \angle BCD. Since BCADBC || AD, BCE=ABC\angle BCE = \angle ABC.
Since BACEBA || CE, mABC+mBCE=180m\angle ABC + m\angle BCE = 180.
Consider the angles around point CC.
mBCD=180mCDAm\angle BCD = 180^\circ - m\angle CDA since ADBCAD || BC.
Since ADE=63\angle ADE = 63^\circ, CDA=18063=117\angle CDA = 180^\circ - 63^\circ = 117^\circ.
Then mBCD=180117=63m\angle BCD = 180^\circ - 117^\circ = 63^\circ.

3. Final Answer

mBCD=63m\angle BCD = 63^\circ

Related problems in "Geometry"

The problem consists of two parts: (a) A window is in the shape of a semi-circle with radius 70 cm. ...

CircleSemi-circlePerimeterBase ConversionNumber Systems
2025/6/11

The problem asks us to find the volume of a cylindrical litter bin in m³ to 2 decimal places (part a...

VolumeCylinderUnits ConversionProblem Solving
2025/6/10

We are given a triangle $ABC$ with $AB = 6$, $AC = 3$, and $\angle BAC = 120^\circ$. $AD$ is an angl...

TriangleAngle BisectorTrigonometryArea CalculationInradius
2025/6/10

The problem asks to find the values for I, JK, L, M, N, O, PQ, R, S, T, U, V, and W, based on the gi...

Triangle AreaInradiusGeometric Proofs
2025/6/10

In triangle $ABC$, $AB = 6$, $AC = 3$, and $\angle BAC = 120^{\circ}$. $D$ is the intersection of th...

TriangleLaw of CosinesAngle Bisector TheoremExternal Angle Bisector TheoremLength of SidesRatio
2025/6/10

A hunter on top of a tree sees an antelope at an angle of depression of $30^{\circ}$. The height of ...

TrigonometryRight TrianglesAngle of DepressionPythagorean Theorem
2025/6/10

A straight line passes through the points $(3, -2)$ and $(4, 5)$ and intersects the y-axis at $-23$....

Linear EquationsSlopeY-interceptCoordinate Geometry
2025/6/10

The problem states that the size of each interior angle of a regular polygon is $135^\circ$. We need...

PolygonsRegular PolygonsInterior AnglesExterior AnglesRotational Symmetry
2025/6/9

Y is 60 km away from X on a bearing of $135^{\circ}$. Z is 80 km away from X on a bearing of $225^{\...

TrigonometryBearingsCosine RuleRight Triangles
2025/6/8

The cross-section of a railway tunnel is shown. The length of the base $AB$ is 100 m, and the radius...

PerimeterArc LengthCircleRadius
2025/6/8