First, we factor the denominators:
x2−64=(x−8)(x+8) 4x2+32x=4x(x+8) Thus, the equation can be written as
(x−8)(x+8)3=4x(x+8)4 We multiply both sides by 4x(x−8)(x+8) to clear the denominators: 3⋅4x=4(x−8) 12x=4x−32 12x−4x=−32 x=8−32 Now we check if x=−4 is a valid solution. The original equation is x2−643=4x2+32x4. x2−64=(−4)2−64=16−64=−48 4x2+32x=4(−4)2+32(−4)=4(16)−128=64−128=−64 The equation becomes
−483=−644 −483=−161 −644=−161 So, the equation holds true.