Castigliano's theorem states that the partial derivative of the total strain energy with respect to a force is equal to the displacement in the direction of that force. For a fixed support, the displacement is zero. We'll use this to determine the reactions.
Let RA, RB, and RC be the reactions at supports A, B, and C respectively. We assume RB is redundant. Therefore, ∂RB∂U=0, where U is the total strain energy. First, calculate the reactions RA and RC in terms of RB. Taking summation of moments about point A:
MA=0=10∗4+2∗10∗5−RB∗4−RC∗10 40+100=4RB+10RC 140=4RB+10RC 10RC=140−4RB RC=14−0.4RB Taking summation of vertical forces:
∑Fy=0=RA+RB+RC−10−2∗10 RA=30−RB−RC=30−RB−(14−0.4RB)=16−0.6RB Let's consider the bending moment at any section x.
We will use the method of sections to calculate the bending moment M(x). The expression for the strain energy for the whole beam is ∫2EIM(x)2dx. So, ∂RB∂U=∫EIM(x)∂RB∂M(x)dx=0 Span AB (0 < x < 4):
M(x)=RAx−0 if x<4 M(x)=RAx−10∗(x−4)−2x2/2 if x>4 Then M(x)=(16−0.6RB)x−x2 since the point load isn't applicable. ∂RB∂M=−0.6x ∫04M(x)∂RB∂Mdx=∫04((16−0.6RB)x−x2)(−0.6x)dx=∫04(−9.6x2+0.36RBx2+0.6x3)dx=[−3.2x3+0.12RBx3+0.15x4]04=−3.2(64)+0.12RB(64)+0.15(256)=−204.8+7.68RB+38.4=−166.4+7.68RB Span BC (0 < x < 2): Distance from B
M(x)=RC(4+x)−10(2+x)−2(6+x)2/2+2(4+x)2/2+RB(x)=(14−0.4RB)(4+x)−10(2+x)−(36+12x+x2)+(16+8x+x2)+RBx 56+14x−1.6RB−0.4RBx−20−10x−36−12x−x2+16+8x+x2+RBx=RBx−12x+16−0.4RBx−1.6RB=16−12x+0.6RBx−1.6RB ∂RB∂M=0.6x−1.6 ∫02M(x)∂RB∂Mdx=∫02(16−12x+0.6RBx−1.6RB)(0.6x−1.6)dx=∫02(9.6x−25.6−7.2x2+19.2x+0.36RBx2−0.96RBx−0.96RBx+2.56RB)dx=∫02(−7.2x2+28.8x−25.6+0.36RBx2−1.92RBx+2.56RB)dx=[−2.4x3+14.4x2−25.6x+0.12RBx3−0.96RBx2+2.56RBx]02=−2.4(8)+14.4(4)−25.6(2)+0.12RB(8)−0.96RB(4)+2.56RB(2)=−19.2+57.6−51.2+0.96RB−3.84RB+5.12RB=−12.8+2.24RB Span CA (0 < x < 4): Distance from C
M(x)=RCx−2x2/2=(14−0.4RB)x−x2 ∂RB∂M=−0.4x ∫04M(x)∂RB∂Mdx=∫04((14−0.4RB)x−x2)(−0.4x)dx=∫04(−5.6x2+0.16RBx2+0.4x3)dx=[−35.6x3+30.16RBx3+40.4x4]04=−35.6(64)+30.16RB(64)+0.1(256)=−119.467+3.413RB+25.6=−93.867+3.413RB Summing all the partial derivatives:
∂RB∂U=−166.4+7.68RB−12.8+2.24RB−93.867+3.413RB=0 −273.067+13.333RB=0 RB=13.333273.067=20.48kN RC=14−0.4RB=14−0.4(20.48)=14−8.192=5.808kN RA=16−0.6RB=16−0.6(20.48)=16−12.288=3.712kN