The problem provides the index models for Amazon and Meta stocks: $R_{Amazon} = 0.032 + 0.9R_M + e_{Amazon}$ $R_{Meta} = 0.075 + 1.2R_M + e_{Meta}$ Also given are: $\sigma_M = 0.25$ $\sigma_{eAmazon} = \sqrt{0.28}$ $\sigma_{eMeta} = 0.10$ We need to find: 1. Covariance between the returns on Amazon and Meta.

Applied MathematicsFinancial ModelingStatisticsCovarianceStandard DeviationCorrelation CoefficientLinear Regression
2025/7/10

1. Problem Description

The problem provides the index models for Amazon and Meta stocks:
RAmazon=0.032+0.9RM+eAmazonR_{Amazon} = 0.032 + 0.9R_M + e_{Amazon}
RMeta=0.075+1.2RM+eMetaR_{Meta} = 0.075 + 1.2R_M + e_{Meta}
Also given are:
σM=0.25\sigma_M = 0.25
σeAmazon=0.28\sigma_{eAmazon} = \sqrt{0.28}
σeMeta=0.10\sigma_{eMeta} = 0.10
We need to find:

1. Covariance between the returns on Amazon and Meta.

2. Standard deviation of Amazon's returns.

3. Standard deviation of Meta's returns.

4. Correlation coefficient between the returns on Amazon and Meta.

2. Solution Steps

1. Covariance between Amazon and Meta:

Cov(RAmazon,RMeta)=Cov(0.032+0.9RM+eAmazon,0.075+1.2RM+eMeta)Cov(R_{Amazon}, R_{Meta}) = Cov(0.032 + 0.9R_M + e_{Amazon}, 0.075 + 1.2R_M + e_{Meta})
Cov(RAmazon,RMeta)=Cov(0.9RM,1.2RM)+Cov(0.9RM,eMeta)+Cov(eAmazon,1.2RM)+Cov(eAmazon,eMeta)Cov(R_{Amazon}, R_{Meta}) = Cov(0.9R_M, 1.2R_M) + Cov(0.9R_M, e_{Meta}) + Cov(e_{Amazon}, 1.2R_M) + Cov(e_{Amazon}, e_{Meta})
Since eAmazone_{Amazon} and eMetae_{Meta} are independent of RMR_M, Cov(RM,eAmazon)=Cov(RM,eMeta)=Cov(eAmazon,eMeta)=0Cov(R_M, e_{Amazon}) = Cov(R_M, e_{Meta}) = Cov(e_{Amazon}, e_{Meta}) = 0.
Cov(RAmazon,RMeta)=(0.9)(1.2)Cov(RM,RM)=(0.9)(1.2)Var(RM)=(0.9)(1.2)σM2Cov(R_{Amazon}, R_{Meta}) = (0.9)(1.2)Cov(R_M, R_M) = (0.9)(1.2)Var(R_M) = (0.9)(1.2)\sigma_M^2
Cov(RAmazon,RMeta)=(0.9)(1.2)(0.25)2=(1.08)(0.0625)=0.0675Cov(R_{Amazon}, R_{Meta}) = (0.9)(1.2)(0.25)^2 = (1.08)(0.0625) = 0.0675

2. Standard deviation of Amazon's returns:

Var(RAmazon)=Var(0.032+0.9RM+eAmazon)Var(R_{Amazon}) = Var(0.032 + 0.9R_M + e_{Amazon})
Var(RAmazon)=Var(0.9RM)+Var(eAmazon)+2Cov(0.9RM,eAmazon)Var(R_{Amazon}) = Var(0.9R_M) + Var(e_{Amazon}) + 2Cov(0.9R_M, e_{Amazon})
Since RMR_M and eAmazone_{Amazon} are independent, Cov(RM,eAmazon)=0Cov(R_M, e_{Amazon}) = 0
Var(RAmazon)=(0.9)2Var(RM)+Var(eAmazon)=(0.9)2σM2+σeAmazon2Var(R_{Amazon}) = (0.9)^2Var(R_M) + Var(e_{Amazon}) = (0.9)^2\sigma_M^2 + \sigma_{eAmazon}^2
Var(RAmazon)=(0.81)(0.25)2+0.28Var(R_{Amazon}) = (0.81)(0.25)^2 + 0.28
Var(RAmazon)=(0.81)(0.0625)+0.28=0.050625+0.28=0.330625Var(R_{Amazon}) = (0.81)(0.0625) + 0.28 = 0.050625 + 0.28 = 0.330625
σAmazon=0.3306250.5750\sigma_{Amazon} = \sqrt{0.330625} \approx 0.5750

3. Standard deviation of Meta's returns:

Var(RMeta)=Var(0.075+1.2RM+eMeta)Var(R_{Meta}) = Var(0.075 + 1.2R_M + e_{Meta})
Var(RMeta)=Var(1.2RM)+Var(eMeta)+2Cov(1.2RM,eMeta)Var(R_{Meta}) = Var(1.2R_M) + Var(e_{Meta}) + 2Cov(1.2R_M, e_{Meta})
Since RMR_M and eMetae_{Meta} are independent, Cov(RM,eMeta)=0Cov(R_M, e_{Meta}) = 0
Var(RMeta)=(1.2)2Var(RM)+Var(eMeta)=(1.2)2σM2+σeMeta2Var(R_{Meta}) = (1.2)^2Var(R_M) + Var(e_{Meta}) = (1.2)^2\sigma_M^2 + \sigma_{eMeta}^2
Var(RMeta)=(1.44)(0.25)2+(0.1)2=(1.44)(0.0625)+0.01=0.09+0.01=0.10Var(R_{Meta}) = (1.44)(0.25)^2 + (0.1)^2 = (1.44)(0.0625) + 0.01 = 0.09 + 0.01 = 0.10
σMeta=0.100.3162\sigma_{Meta} = \sqrt{0.10} \approx 0.3162

4. Correlation coefficient between Amazon and Meta:

ρAmazon,Meta=Cov(RAmazon,RMeta)σAmazonσMeta\rho_{Amazon, Meta} = \frac{Cov(R_{Amazon}, R_{Meta})}{\sigma_{Amazon}\sigma_{Meta}}
ρAmazon,Meta=0.0675(0.5750)(0.3162)=0.06750.1818150.3713\rho_{Amazon, Meta} = \frac{0.0675}{(0.5750)(0.3162)} = \frac{0.0675}{0.181815} \approx 0.3713

3. Final Answer

1. Covariance between Amazon and Meta stocks: 0.0675

2. Standard deviation of Amazon's returns: 0.5750

3. Standard deviation of Meta's returns: 0.3162

4. Correlation coefficient between Amazon and Meta stocks: 0.3713

Related problems in "Applied Mathematics"

The problem asks us to fill in the blanks with either $g$ (grams) or $kg$ (kilograms) to make the st...

Units of MeasurementWeightConversion
2025/7/17

Warda walks at an average speed of 3 km/hr for 45 minutes before running for half an hour at a certa...

Word ProblemDistanceSpeedTimeRateLinear Equations
2025/7/16

Determine the vertical displacement at the point $I$ of the given structure, due to the effect of th...

Structural AnalysisDeflectionBeam TheoryVirtual WorkEngineering Mechanics
2025/7/16

The problem asks to determine the vertical displacement at point I (which I assume is at the top of ...

Structural MechanicsCastigliano's TheoremBeam BendingStrain EnergyDeflectionIntegration
2025/7/16

The problem asks to determine the vertical displacement at a point "I" (likely implied as the midpoi...

Structural MechanicsBeam DeflectionFlexural RigidityUniformly Distributed Load (UDL)ElasticityVirtual WorkCastigliano's Theorem
2025/7/16

The problem asks us to determine the vertical displacement at a point I (assumed to be a point withi...

Structural MechanicsFinite Element AnalysisVirtual WorkBending MomentDeflectionEngineering
2025/7/16

The problem describes a lottery win of $1,000,000 and presents several options for receiving the pri...

Financial MathematicsPresent ValueAnnuityPerpetuityDiscount Rate
2025/7/16

The problem consists of two parts: (a) An aircraft flies at different speeds and bearings for certai...

TrigonometryDifferentiationDistanceBearingAircraft Navigation
2025/7/15

The problem presents a line graph showing the distance of taxi driver Joe from his home over a 12-ho...

Graph InterpretationDistanceRate of ChangeReal-World Application
2025/7/15

The problem asks to solve a circuit using Kirchhoff's laws. The circuit consists of two voltage sour...

Circuit AnalysisKirchhoff's LawsThevenin's TheoremNorton's TheoremElectrical Engineering
2025/7/14