The problem asks us to fill in the missing indices in the given expressions involving exponents. We need to use the rule that $x^a * x^b = x^{a+b}$.

AlgebraExponentsAlgebraic ExpressionsSimplification
2025/3/10

1. Problem Description

The problem asks us to fill in the missing indices in the given expressions involving exponents. We need to use the rule that xaxb=xa+bx^a * x^b = x^{a+b}.

2. Solution Steps

a) m5m3=m?m^5 * m^3 = m^?
5+3=85 + 3 = 8
m5m3=m8m^5 * m^3 = m^8
b) n5n?=nn^5 * n^? = n
Since n=n1n = n^1, we have 5+?=15 + ? = 1, so ?=15=4? = 1 - 5 = -4.
n5n4=n1=nn^5 * n^{-4} = n^1 = n
c) ww3=w?w * w^3 = w^?
Since w=w1w = w^1, we have 1+3=41 + 3 = 4.
ww3=w4w * w^3 = w^4
d) g2g7=g?g^{-2} * g^7 = g^?
2+7=5-2 + 7 = 5
g2g7=g5g^{-2} * g^7 = g^5
e) pp9p7=p?p * p^{-9} * p^7 = p^?
Since p=p1p = p^1, we have 1+(9)+7=19+7=11 + (-9) + 7 = 1 - 9 + 7 = -1
pp9p7=p1p * p^{-9} * p^7 = p^{-1}
f) x12x12=x?x^{\frac{1}{2}} * x^{\frac{1}{2}} = x^?
12+12=1\frac{1}{2} + \frac{1}{2} = 1
x12x12=x1=xx^{\frac{1}{2}} * x^{\frac{1}{2}} = x^1 = x
g) uu12=u?u * u^{\frac{1}{2}} = u^?
Since u=u1u = u^1, we have 1+12=22+12=321 + \frac{1}{2} = \frac{2}{2} + \frac{1}{2} = \frac{3}{2}
uu12=u32u * u^{\frac{1}{2}} = u^{\frac{3}{2}}
h) a1a34=a?a^{-1} * a^{\frac{3}{4}} = a^?
1+34=44+34=14-1 + \frac{3}{4} = -\frac{4}{4} + \frac{3}{4} = -\frac{1}{4}
a1a34=a14a^{-1} * a^{\frac{3}{4}} = a^{-\frac{1}{4}}
i) g2g2=g?=...g^{-2} * g^2 = g^? = ...
2+2=0-2 + 2 = 0
g2g2=g0=1g^{-2} * g^2 = g^0 = 1
j) d32d13=d?d^{\frac{3}{2}} * d^{\frac{1}{3}} = d^?
32+13=96+26=116\frac{3}{2} + \frac{1}{3} = \frac{9}{6} + \frac{2}{6} = \frac{11}{6}
d32d13=d116d^{\frac{3}{2}} * d^{\frac{1}{3}} = d^{\frac{11}{6}}

3. Final Answer

a) m8m^8
b) n4n^{-4}
c) w4w^4
d) g5g^5
e) p1p^{-1}
f) x1x^1
g) u32u^{\frac{3}{2}}
h) a14a^{-\frac{1}{4}}
i) g0g^0
j) d116d^{\frac{11}{6}}