We need to find the value of the expression $6 + \log_b(\frac{1}{b^3}) + \log_b(\sqrt{b})$.

AlgebraLogarithmsExponentsSimplification
2025/7/20

1. Problem Description

We need to find the value of the expression 6+logb(1b3)+logb(b)6 + \log_b(\frac{1}{b^3}) + \log_b(\sqrt{b}).

2. Solution Steps

First, let's simplify the logarithmic terms.
Recall that loga(xn)=nloga(x)\log_a(x^n) = n \log_a(x). Also 1xn=xn\frac{1}{x^n} = x^{-n}.
logb(1b3)=logb(b3)=3logb(b)\log_b(\frac{1}{b^3}) = \log_b(b^{-3}) = -3\log_b(b).
Since logb(b)=1\log_b(b) = 1, we have logb(1b3)=3\log_b(\frac{1}{b^3}) = -3.
Next, let's simplify logb(b)\log_b(\sqrt{b}).
b=b12\sqrt{b} = b^{\frac{1}{2}}.
So, logb(b)=logb(b12)=12logb(b)=12\log_b(\sqrt{b}) = \log_b(b^{\frac{1}{2}}) = \frac{1}{2}\log_b(b) = \frac{1}{2}.
Now, substitute these simplified values back into the original expression:
6+logb(1b3)+logb(b)=6+(3)+12=63+12=3+12=62+12=726 + \log_b(\frac{1}{b^3}) + \log_b(\sqrt{b}) = 6 + (-3) + \frac{1}{2} = 6 - 3 + \frac{1}{2} = 3 + \frac{1}{2} = \frac{6}{2} + \frac{1}{2} = \frac{7}{2}.

3. Final Answer

72\frac{7}{2}