First, let's simplify the logarithmic terms.
Recall that loga(xn)=nloga(x). Also xn1=x−n. logb(b31)=logb(b−3)=−3logb(b). Since logb(b)=1, we have logb(b31)=−3. Next, let's simplify logb(b). b=b21. So, logb(b)=logb(b21)=21logb(b)=21. Now, substitute these simplified values back into the original expression:
6+logb(b31)+logb(b)=6+(−3)+21=6−3+21=3+21=26+21=27.