(a) The binomial expansion of (1−y)6 is given by: (1−y)6=∑k=06(k6)(1)6−k(−y)k Expanding the terms, we get:
(1−y)6=(06)(1)6(−y)0+(16)(1)5(−y)1+(26)(1)4(−y)2+(36)(1)3(−y)3+(46)(1)2(−y)4+(56)(1)1(−y)5+(66)(1)0(−y)6 (1−y)6=1−6y+15y2−20y3+15y4−6y5+y6 (b) Substitute y=x−x2 into the expansion of (1−y)6: (1−(x−x2))6=1−6(x−x2)+15(x−x2)2−20(x−x2)3+15(x−x2)4−6(x−x2)5+(x−x2)6 Now we expand each term and keep only the terms up to x5: −6(x−x2)=−6x+6x2 15(x−x2)2=15(x2−2x3+x4)=15x2−30x3+15x4 −20(x−x2)3=−20(x3−3x4+3x5−x6)=−20x3+60x4−60x5+20x6. Keep up to x5: −20x3+60x4−60x5 15(x−x2)4=15(x4−4x5+6x6−4x7+x8)=15x4−60x5+.... Keep up to x5: 15x4−60x5 −6(x−x2)5=−6(x5−5x6+...)=−6x5+.... Keep up to x5: −6x5 (x−x2)6=.... The lowest power of x in this term is x6, so we ignore it. Now, we sum all terms up to x5: 1+(−6x)+(6x2+15x2)+(−30x3−20x3)+(15x4+60x4+15x4)+(−60x5−60x5−6x5) =1−6x+21x2−50x3+90x4−126x5