The problem asks us to show that the element stiffness matrix for a pin-jointed structure is given by the provided matrix. The equation is of the form: $\begin{bmatrix} F_{x1} \\ F_{y1} \\ F_{x2} \\ F_{y2} \end{bmatrix} = \frac{AE}{L} \begin{bmatrix} l^2 & lm & -l^2 & -lm \\ lm & m^2 & -lm & -m^2 \\ -l^2 & -lm & l^2 & lm \\ -lm & -m^2 & lm & m^2 \end{bmatrix} \begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \end{bmatrix}$ where $l$ and $m$ are the direction cosines of the line 1-2.

Applied MathematicsStructural MechanicsFinite Element AnalysisStiffness MatrixLinear AlgebraEngineering
2025/7/26

1. Problem Description

The problem asks us to show that the element stiffness matrix for a pin-jointed structure is given by the provided matrix. The equation is of the form:
[Fx1Fy1Fx2Fy2]=AEL[l2lml2lmlmm2lmm2l2lml2lmlmm2lmm2][u1v1u2v2]\begin{bmatrix} F_{x1} \\ F_{y1} \\ F_{x2} \\ F_{y2} \end{bmatrix} = \frac{AE}{L} \begin{bmatrix} l^2 & lm & -l^2 & -lm \\ lm & m^2 & -lm & -m^2 \\ -l^2 & -lm & l^2 & lm \\ -lm & -m^2 & lm & m^2 \end{bmatrix} \begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \end{bmatrix}
where ll and mm are the direction cosines of the line 1-
2.

2. Solution Steps

The element stiffness matrix for a pin-jointed structure is derived based on the axial stiffness and transformation of coordinates. The axial stiffness of the element is given by k=AELk = \frac{AE}{L}, where A is the cross-sectional area, E is Young's modulus, and L is the length of the member.
The axial deformation, δ\delta, of the member can be expressed in terms of the global displacements u1,v1,u2,v2u_1, v_1, u_2, v_2 as follows:
δ=(u2u1)l+(v2v1)m\delta = (u_2 - u_1)l + (v_2 - v_1)m
The axial force, FF, in the member is given by:
F=kδ=AEL[(u2u1)l+(v2v1)m]F = k\delta = \frac{AE}{L} [(u_2 - u_1)l + (v_2 - v_1)m]
Now, we resolve this axial force into its x and y components at nodes 1 and
2.
Fx1=Fl=AELl[(u2u1)l+(v2v1)m]=AEL[l2u2+l2u1lmv2+lmv1]=AEL[l2u1+lmv1l2u2lmv2]F_{x1} = -Fl = -\frac{AE}{L}l [(u_2 - u_1)l + (v_2 - v_1)m] = \frac{AE}{L} [-l^2 u_2 + l^2 u_1 -lm v_2 + lm v_1 ] = \frac{AE}{L} [l^2u_1 + lmv_1 -l^2u_2 - lmv_2]
Fy1=Fm=AELm[(u2u1)l+(v2v1)m]=AEL[lmu2+lmu1m2v2+m2v1]=AEL[lmu1+m2v1lmu2m2v2]F_{y1} = -Fm = -\frac{AE}{L}m [(u_2 - u_1)l + (v_2 - v_1)m] = \frac{AE}{L} [-lm u_2 + lmu_1 -m^2 v_2 + m^2 v_1 ] = \frac{AE}{L} [lmu_1 + m^2v_1 -lmu_2 - m^2v_2]
Fx2=Fl=AELl[(u2u1)l+(v2v1)m]=AEL[l2u2l2u1+lmv2lmv1]=AEL[l2u1lmv1+l2u2+lmv2]F_{x2} = Fl = \frac{AE}{L}l [(u_2 - u_1)l + (v_2 - v_1)m] = \frac{AE}{L} [l^2 u_2 - l^2 u_1 +lm v_2 - lm v_1 ] = \frac{AE}{L} [-l^2u_1 - lmv_1 +l^2u_2 + lmv_2]
Fy2=Fm=AELm[(u2u1)l+(v2v1)m]=AEL[lmu2lmu1+m2v2m2v1]=AEL[lmu1m2v1+lmu2+m2v2]F_{y2} = Fm = \frac{AE}{L}m [(u_2 - u_1)l + (v_2 - v_1)m] = \frac{AE}{L} [lm u_2 - lmu_1 +m^2 v_2 - m^2 v_1 ] = \frac{AE}{L} [-lmu_1 - m^2v_1 +lmu_2 + m^2v_2]
Writing these equations in matrix form, we get:
[Fx1Fy1Fx2Fy2]=AEL[l2lml2lmlmm2lmm2l2lml2lmlmm2lmm2][u1v1u2v2]\begin{bmatrix} F_{x1} \\ F_{y1} \\ F_{x2} \\ F_{y2} \end{bmatrix} = \frac{AE}{L} \begin{bmatrix} l^2 & lm & -l^2 & -lm \\ lm & m^2 & -lm & -m^2 \\ -l^2 & -lm & l^2 & lm \\ -lm & -m^2 & lm & m^2 \end{bmatrix} \begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \end{bmatrix}

3. Final Answer

The element stiffness matrix for a pin-jointed structure is given by:
[Fx1Fy1Fx2Fy2]=AEL[l2lml2lmlmm2lmm2l2lml2lmlmm2lmm2][u1v1u2v2]\begin{bmatrix} F_{x1} \\ F_{y1} \\ F_{x2} \\ F_{y2} \end{bmatrix} = \frac{AE}{L} \begin{bmatrix} l^2 & lm & -l^2 & -lm \\ lm & m^2 & -lm & -m^2 \\ -l^2 & -lm & l^2 & lm \\ -lm & -m^2 & lm & m^2 \end{bmatrix} \begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \end{bmatrix}

Related problems in "Applied Mathematics"

We need to calculate the Yield to Maturity (YTM) of a bond given the following information: Face Val...

FinanceBond ValuationYield to Maturity (YTM)Financial ModelingApproximation
2025/7/26

We are given a simply supported beam AB of length $L$, carrying a point load $W$ at a distance $a$ f...

Structural MechanicsBeam TheoryStrain EnergyDeflectionCastigliano's TheoremIntegration
2025/7/26

The problem asks us to determine the degree of static indeterminacy of a rigid plane frame. We need ...

Structural AnalysisStaticsIndeterminacyPlane Frame
2025/7/26

The problem asks to determine the stiffness component and find the internal stresses of a given fram...

Structural AnalysisStiffness MethodFinite Element AnalysisBending MomentShear ForceStress CalculationEngineering Mechanics
2025/7/26

The problem asks to determine the stiffness component and find the internal stresses of a given fram...

Structural AnalysisStiffness MethodFinite Element AnalysisFrame AnalysisStress CalculationEngineering Mechanics
2025/7/26

The problem asks to determine the stiffness component and find the internal stresses of a given fram...

Structural AnalysisStiffness MethodFinite Element AnalysisFrame AnalysisStress CalculationEngineering Mechanics
2025/7/26

The problem asks to determine the stiffness component and find the internal stresses of a given fram...

Structural EngineeringStiffness MethodFinite Element AnalysisFrame AnalysisStructural MechanicsFixed-End MomentsElement Stiffness Matrix
2025/7/26

The problem asks us to determine the stiffness component and find the internal stresses of a given f...

Structural AnalysisStiffness MethodFrame AnalysisFinite Element MethodEngineering Mechanics
2025/7/26

The problem is a cost accounting exercise for the company SETEX. We are given the indirect costs (fi...

Cost AccountingLinear EquationsPercentage CalculationsImputationFixed CostsVariable Costs
2025/7/25

Kate will receive $300 next year, $500 two years from now, and $1000 three years from now. All payme...

Financial MathematicsFuture ValueCompound Interest
2025/7/25