Given that $\sin \alpha = \frac{\sqrt{3}}{2}$ and $0 < \alpha < \pi$, find $\cos \alpha$, $\tan \alpha$, and $\cot \alpha$. Also, prove the identity $\sin^4 x + \cos^4 x = 1 - 3\sin^2 x \cos^2 x$. This looks like a typographical error and is actually $\sin^4 x + \cos^4 x = 1 - 2\sin^2 x \cos^2 x$.

AlgebraTrigonometryTrigonometric IdentitiesSineCosineTangentCotangent
2025/4/5

1. Problem Description

Given that sinα=32\sin \alpha = \frac{\sqrt{3}}{2} and 0<α<π0 < \alpha < \pi, find cosα\cos \alpha, tanα\tan \alpha, and cotα\cot \alpha. Also, prove the identity sin4x+cos4x=13sin2xcos2x\sin^4 x + \cos^4 x = 1 - 3\sin^2 x \cos^2 x. This looks like a typographical error and is actually sin4x+cos4x=12sin2xcos2x\sin^4 x + \cos^4 x = 1 - 2\sin^2 x \cos^2 x.

2. Solution Steps

First, we find cosα\cos \alpha. Since sin2α+cos2α=1\sin^2 \alpha + \cos^2 \alpha = 1, we have:
cos2α=1sin2α\cos^2 \alpha = 1 - \sin^2 \alpha
cos2α=1(32)2\cos^2 \alpha = 1 - \left(\frac{\sqrt{3}}{2}\right)^2
cos2α=134=14\cos^2 \alpha = 1 - \frac{3}{4} = \frac{1}{4}
cosα=±14=±12\cos \alpha = \pm \sqrt{\frac{1}{4}} = \pm \frac{1}{2}
Since 0<α<π0 < \alpha < \pi, α\alpha can be in the first or second quadrant.
If α\alpha is in the first quadrant (0<α<π2)(0 < \alpha < \frac{\pi}{2}), then cosα=12\cos \alpha = \frac{1}{2}.
If α\alpha is in the second quadrant (π2<α<π)(\frac{\pi}{2} < \alpha < \pi), then cosα=12\cos \alpha = -\frac{1}{2}.
Since sinα=32\sin \alpha = \frac{\sqrt{3}}{2}, we know α=π3\alpha = \frac{\pi}{3} or α=2π3\alpha = \frac{2\pi}{3}.
If α=π3\alpha = \frac{\pi}{3}, then cosα=cosπ3=12\cos \alpha = \cos \frac{\pi}{3} = \frac{1}{2}.
If α=2π3\alpha = \frac{2\pi}{3}, then cosα=cos2π3=12\cos \alpha = \cos \frac{2\pi}{3} = -\frac{1}{2}.
Therefore, cosα\cos \alpha can be either 12\frac{1}{2} or 12-\frac{1}{2}.
Next, we calculate tanα\tan \alpha and cotα\cot \alpha for both cases.
Case 1: cosα=12\cos \alpha = \frac{1}{2}
tanα=sinαcosα=3212=3\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}
cotα=1tanα=13=33\cot \alpha = \frac{1}{\tan \alpha} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}
Case 2: cosα=12\cos \alpha = -\frac{1}{2}
tanα=sinαcosα=3212=3\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} = -\sqrt{3}
cotα=1tanα=13=33\cot \alpha = \frac{1}{\tan \alpha} = \frac{1}{-\sqrt{3}} = -\frac{\sqrt{3}}{3}
Now, let's prove the identity sin4x+cos4x=12sin2xcos2x\sin^4 x + \cos^4 x = 1 - 2\sin^2 x \cos^2 x:
sin4x+cos4x=(sin2x+cos2x)22sin2xcos2x\sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x
Since sin2x+cos2x=1\sin^2 x + \cos^2 x = 1, we have:
sin4x+cos4x=122sin2xcos2x=12sin2xcos2x\sin^4 x + \cos^4 x = 1^2 - 2\sin^2 x \cos^2 x = 1 - 2\sin^2 x \cos^2 x

3. Final Answer

cosα=±12\cos \alpha = \pm \frac{1}{2}
If cosα=12\cos \alpha = \frac{1}{2}, then tanα=3\tan \alpha = \sqrt{3} and cotα=33\cot \alpha = \frac{\sqrt{3}}{3}.
If cosα=12\cos \alpha = -\frac{1}{2}, then tanα=3\tan \alpha = -\sqrt{3} and cotα=33\cot \alpha = -\frac{\sqrt{3}}{3}.
The correct identity is sin4x+cos4x=12sin2xcos2x\sin^4 x + \cos^4 x = 1 - 2\sin^2 x \cos^2 x.

Related problems in "Algebra"

We are given the equation $x = \frac{2U - 3}{3U + 2}$ and we want to make $U$ the subject of the for...

Equation SolvingVariable IsolationAlgebraic Manipulation
2025/4/11

$R$ is directly proportional to $L$ and inversely proportional to $P$. Given that $R = 3$ when $L = ...

ProportionalityDirect ProportionInverse ProportionSolving Equations
2025/4/11

We are given two equations: $4x + 2y = 16$ and $6x - 2y = 4$. We want to find the value of $y - x$.

Linear EquationsSystems of EquationsSolving Equations
2025/4/11

We are asked to simplify the expression $2\sqrt{7} - \frac{14}{\sqrt{7}} + \frac{7}{\sqrt{21}}$.

SimplificationRadicalsRationalization
2025/4/11

Mensah is currently 5 years old. Joyce is thrice as old as Mensah. The problem asks in how many year...

Age ProblemsLinear EquationsWord Problems
2025/4/11

The problem asks to find the value of $x$ in the equation $16 \times 2^{(x+1)} = 4^x \times 8^{(1-x)...

ExponentsEquationsSolving EquationsSimplification
2025/4/11

Question 7 asks us to factorize the expression $6pq - 3rs - 3ps + 6qr$. Question 8 asks us to find t...

FactorizationAlgebraic ExpressionsArithmetic OperationsFractions
2025/4/11

Given $\log_{10}2 = m$ and $\log_{10}3 = n$, find $\log_{10}24$ in terms of $m$ and $n$.

LogarithmsSequencesPattern RecognitionArithmetic Sequences
2025/4/11

We are asked to solve the equation $2^{\sqrt{2x+1}} = 32$ for $x$.

ExponentsEquationsRadicalsSolving Equations
2025/4/11

We are given that $(x+2)$ is a factor of the quadratic $x^2 + Px - 10$. We need to find the value of...

Quadratic EquationsFactor TheoremPolynomials
2025/4/10