The given function is a quadratic function in the form g(x)=(x−h)2+k, where the vertex of the parabola is at the point (h,k). In this case, we can rewrite the given function as g(x)=(x−(−4))2+0. Thus, h=−4 and k=0. The vertex of the parabola is at (−4,0). The basic parabola y=x2 opens upwards. The function g(x)=(x+4)2 is a horizontal shift of the basic parabola y=x2 by 4 units to the left. To graph the parabola, we can find a few points.
When x=−3, g(−3)=(−3+4)2=(1)2=1. When x=−5, g(−5)=(−5+4)2=(−1)2=1. When x=−2, g(−2)=(−2+4)2=(2)2=4. When x=−6, g(−6)=(−6+4)2=(−2)2=4. When x=−1, g(−1)=(−1+4)2=(3)2=9. When x=−7, g(−7)=(−7+4)2=(−3)2=9. So, some points on the graph are (−4,0), (−3,1), (−5,1), (−2,4), (−6,4), (−1,9), and (−7,9). The graph is a parabola with vertex at (−4,0) opening upwards.