The problem asks to find several vector projections given the vectors $u = i + 2j$, $v = 2i - j$, and $w = i + 5j$. Specifically, we need to compute the following projections: 23. $proj_v u$ 24. $proj_u v$ 25. $proj_u w$ 26. $proj_u (w - v)$ 27. $proj_j u$ 28. $proj_i u$
2025/4/5
1. Problem Description
The problem asks to find several vector projections given the vectors , , and . Specifically, we need to compute the following projections:
2
3. $proj_v u$
2
4. $proj_u v$
2
5. $proj_u w$
2
6. $proj_u (w - v)$
2
7. $proj_j u$
2
8. $proj_i u$
2. Solution Steps
The formula for the projection of vector onto vector is given by:
where is the dot product of and , and is the square of the magnitude of .
We have the following vectors:
2
3. $proj_v u$
2
4. $proj_u v$
2
5. $proj_u w$
2
6. $proj_u (w - v)$
2
7. $proj_j u$
2
8. $proj_i u$
3. Final Answer
2
3. $proj_v u = 0i + 0j$
2
4. $proj_u v = 0i + 0j$
2
5. $proj_u w = \frac{11}{5}i + \frac{22}{5}j$
2
6. $proj_u (w - v) = \frac{11}{5}i + \frac{22}{5}j$
2
7. $proj_j u = 0i + 2j$
2