The problem asks to find several vector projections given the vectors $u = i + 2j$, $v = 2i - j$, and $w = i + 5j$. Specifically, we need to compute the following projections: 23. $proj_v u$ 24. $proj_u v$ 25. $proj_u w$ 26. $proj_u (w - v)$ 27. $proj_j u$ 28. $proj_i u$

GeometryVector ProjectionVectorsLinear Algebra
2025/4/5

1. Problem Description

The problem asks to find several vector projections given the vectors u=i+2ju = i + 2j, v=2ijv = 2i - j, and w=i+5jw = i + 5j. Specifically, we need to compute the following projections:
2

3. $proj_v u$

2

4. $proj_u v$

2

5. $proj_u w$

2

6. $proj_u (w - v)$

2

7. $proj_j u$

2

8. $proj_i u$

2. Solution Steps

The formula for the projection of vector aa onto vector bb is given by:
projba=abb2bproj_b a = \frac{a \cdot b}{||b||^2} b
where aba \cdot b is the dot product of aa and bb, and b2||b||^2 is the square of the magnitude of bb.
We have the following vectors:
u=i+2j=<1,2>u = i + 2j = <1, 2>
v=2ij=<2,1>v = 2i - j = <2, -1>
w=i+5j=<1,5>w = i + 5j = <1, 5>
i=<1,0>i = <1, 0>
j=<0,1>j = <0, 1>
2

3. $proj_v u$

uv=(1)(2)+(2)(1)=22=0u \cdot v = (1)(2) + (2)(-1) = 2 - 2 = 0
v2=(2)2+(1)2=4+1=5||v||^2 = (2)^2 + (-1)^2 = 4 + 1 = 5
projvu=uvv2v=05v=0<2,1>=<0,0>=0i+0jproj_v u = \frac{u \cdot v}{||v||^2} v = \frac{0}{5} v = 0 <2, -1> = <0, 0> = 0i + 0j
2

4. $proj_u v$

vu=(2)(1)+(1)(2)=22=0v \cdot u = (2)(1) + (-1)(2) = 2 - 2 = 0
u2=(1)2+(2)2=1+4=5||u||^2 = (1)^2 + (2)^2 = 1 + 4 = 5
projuv=vuu2u=05u=0<1,2>=<0,0>=0i+0jproj_u v = \frac{v \cdot u}{||u||^2} u = \frac{0}{5} u = 0 <1, 2> = <0, 0> = 0i + 0j
2

5. $proj_u w$

wu=(1)(1)+(5)(2)=1+10=11w \cdot u = (1)(1) + (5)(2) = 1 + 10 = 11
u2=(1)2+(2)2=1+4=5||u||^2 = (1)^2 + (2)^2 = 1 + 4 = 5
projuw=wuu2u=115<1,2>=<115,225>=115i+225jproj_u w = \frac{w \cdot u}{||u||^2} u = \frac{11}{5} <1, 2> = <\frac{11}{5}, \frac{22}{5}> = \frac{11}{5}i + \frac{22}{5}j
2

6. $proj_u (w - v)$

wv=<1,5><2,1>=<12,5(1)>=<1,6>w - v = <1, 5> - <2, -1> = <1-2, 5-(-1)> = <-1, 6>
(wv)u=(1)(1)+(6)(2)=1+12=11(w - v) \cdot u = (-1)(1) + (6)(2) = -1 + 12 = 11
u2=(1)2+(2)2=1+4=5||u||^2 = (1)^2 + (2)^2 = 1 + 4 = 5
proju(wv)=(wv)uu2u=115<1,2>=<115,225>=115i+225jproj_u (w - v) = \frac{(w - v) \cdot u}{||u||^2} u = \frac{11}{5} <1, 2> = <\frac{11}{5}, \frac{22}{5}> = \frac{11}{5}i + \frac{22}{5}j
2

7. $proj_j u$

uj=(1)(0)+(2)(1)=0+2=2u \cdot j = (1)(0) + (2)(1) = 0 + 2 = 2
j2=(0)2+(1)2=0+1=1||j||^2 = (0)^2 + (1)^2 = 0 + 1 = 1
projju=ujj2j=21<0,1>=2<0,1>=<0,2>=0i+2jproj_j u = \frac{u \cdot j}{||j||^2} j = \frac{2}{1} <0, 1> = 2 <0, 1> = <0, 2> = 0i + 2j
2

8. $proj_i u$

ui=(1)(1)+(2)(0)=1+0=1u \cdot i = (1)(1) + (2)(0) = 1 + 0 = 1
i2=(1)2+(0)2=1+0=1||i||^2 = (1)^2 + (0)^2 = 1 + 0 = 1
projiu=uii2i=11<1,0>=1<1,0>=<1,0>=1i+0jproj_i u = \frac{u \cdot i}{||i||^2} i = \frac{1}{1} <1, 0> = 1 <1, 0> = <1, 0> = 1i + 0j

3. Final Answer

2

3. $proj_v u = 0i + 0j$

2

4. $proj_u v = 0i + 0j$

2

5. $proj_u w = \frac{11}{5}i + \frac{22}{5}j$

2

6. $proj_u (w - v) = \frac{11}{5}i + \frac{22}{5}j$

2

7. $proj_j u = 0i + 2j$

2

8. $proj_i u = 1i + 0j$

Related problems in "Geometry"

We are asked to find the area of the largest rectangle that can be inscribed in the ellipse given by...

EllipseOptimizationAreaCalculus
2025/4/11

We are given an ellipse with equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where $a \neq b$. We ...

EllipseTangentsAnalytic GeometryCoordinate GeometryQuadratic Equations
2025/4/11

We are asked to find the area of the largest rectangle that can be inscribed in the ellipse given by...

EllipseOptimizationCalculusAreaRectangle
2025/4/11

The problem asks us to identify which of the given conditions (AAS, SSS, SAS, SSA) is *not* a suffic...

Triangle CongruenceCongruence TheoremsAASSSSSASSSA
2025/4/10

We are given a circle with center $O$. Points $L$, $M$, and $N$ are on the circumference. We are giv...

Circle GeometryAngles in a TriangleCentral AngleInscribed Angle
2025/4/10

In the diagram, $O$ is the center of the circle, and $\overline{PQ}$ and $\overline{RS}$ are tangent...

Circle GeometryTangentsAnglesQuadrilaterals
2025/4/10

We are given a diagram where $PQ$ is a straight line. We have angles $x$, $y$, $z$ and $m$ such that...

AnglesStraight LinesAlgebraic Manipulation
2025/4/10

Question 37 asks to find the sum of the interior angles of a pentagon. Question 38 asks to calculate...

PolygonInterior AnglesSphereVolumeApproximation
2025/4/10

We are asked to find the lateral area ($L$) and surface area ($S$) of a triangular prism. The base o...

PrismsSurface AreaLateral AreaTriangles3D GeometryArea Calculation
2025/4/10

The problem asks us to find the surface area of a prism, given that the lateral area of the prism is...

Surface AreaPrismsArea CalculationGeometric ShapesPentagonEquilateral TriangleRectangle
2025/4/10