$x = \frac{1}{4}$、 $y = \frac{1}{6}$ のとき、以下の式の値を求めなさい。 (1) $x+y$ (2) $2(x+y)$ (3) $2x+2y$ (4) $-3(x+y)$ (5) $-3x-3y$ (6) $-(x+y)$ (7) $-x-y$ (8) $-(x-y)$

算数分数四則演算代入
2025/8/1

1. 問題の内容

x=14x = \frac{1}{4}y=16y = \frac{1}{6} のとき、以下の式の値を求めなさい。
(1) x+yx+y
(2) 2(x+y)2(x+y)
(3) 2x+2y2x+2y
(4) 3(x+y)-3(x+y)
(5) 3x3y-3x-3y
(6) (x+y)-(x+y)
(7) xy-x-y
(8) (xy)-(x-y)

2. 解き方の手順

まず、xxyy の値をそれぞれ与えられた式の xxyy に代入します。その後、四則演算のルールに従って計算を行います。
(1) x+y=14+16=312+212=512x+y = \frac{1}{4} + \frac{1}{6} = \frac{3}{12} + \frac{2}{12} = \frac{5}{12}
(2) 2(x+y)=2(14+16)=2(512)=1012=562(x+y) = 2(\frac{1}{4} + \frac{1}{6}) = 2(\frac{5}{12}) = \frac{10}{12} = \frac{5}{6}
(3) 2x+2y=2(14)+2(16)=12+13=36+26=562x+2y = 2(\frac{1}{4}) + 2(\frac{1}{6}) = \frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6}
(4) 3(x+y)=3(14+16)=3(512)=1512=54-3(x+y) = -3(\frac{1}{4} + \frac{1}{6}) = -3(\frac{5}{12}) = -\frac{15}{12} = -\frac{5}{4}
(5) 3x3y=3(14)3(16)=3412=3424=54-3x-3y = -3(\frac{1}{4}) - 3(\frac{1}{6}) = -\frac{3}{4} - \frac{1}{2} = -\frac{3}{4} - \frac{2}{4} = -\frac{5}{4}
(6) (x+y)=(14+16)=(512)=512-(x+y) = -(\frac{1}{4} + \frac{1}{6}) = -(\frac{5}{12}) = -\frac{5}{12}
(7) xy=1416=312212=512-x-y = -\frac{1}{4} - \frac{1}{6} = -\frac{3}{12} - \frac{2}{12} = -\frac{5}{12}
(8) (xy)=(1416)=(312212)=(112)=112-(x-y) = -(\frac{1}{4} - \frac{1}{6}) = -(\frac{3}{12} - \frac{2}{12}) = -(\frac{1}{12}) = -\frac{1}{12}

3. 最終的な答え

(1) 512\frac{5}{12}
(2) 56\frac{5}{6}
(3) 56\frac{5}{6}
(4) 54-\frac{5}{4}
(5) 54-\frac{5}{4}
(6) 512-\frac{5}{12}
(7) 512-\frac{5}{12}
(8) 112-\frac{1}{12}