Given a triangle $ABC$, $M$ is the midpoint of $[AB]$ and $N$ is the midpoint of $[MC]$. 1) a) Place the point $L$ such that $\vec{CL} = \frac{1}{3} \vec{CB}$. b) Show that the points $A$, $N$ and $L$ are collinear. 2) a) Place the points $I$, $J$ and $K$ such that $\vec{BI} = \frac{3}{2} \vec{BC}$, $\vec{CJ} = \frac{1}{3} \vec{CA}$ and $\vec{AK} = \frac{2}{5} \vec{AB}$. b) Show that the points $I$, $J$ and $K$ are collinear.

GeometryVectorsCollinearityTriangle Geometry
2025/4/5

1. Problem Description

Given a triangle ABCABC, MM is the midpoint of [AB][AB] and NN is the midpoint of [MC][MC].
1) a) Place the point LL such that CL=13CB\vec{CL} = \frac{1}{3} \vec{CB}.
b) Show that the points AA, NN and LL are collinear.
2) a) Place the points II, JJ and KK such that BI=32BC\vec{BI} = \frac{3}{2} \vec{BC}, CJ=13CA\vec{CJ} = \frac{1}{3} \vec{CA} and AK=25AB\vec{AK} = \frac{2}{5} \vec{AB}.
b) Show that the points II, JJ and KK are collinear.

2. Solution Steps

1) a) We simply place the point LL such that CL=13CB\vec{CL} = \frac{1}{3} \vec{CB}. This means that LL lies on the segment [CB][CB], and CL=13CBCL = \frac{1}{3}CB.
b) To show that AA, NN and LL are collinear, we need to show that AN\vec{AN} and AL\vec{AL} are collinear.
Since MM is the midpoint of [AB][AB], we have AM=12AB\vec{AM} = \frac{1}{2} \vec{AB}.
Since NN is the midpoint of [MC][MC], we have AN=12(AM+AC)=12(12AB+AC)=14AB+12AC\vec{AN} = \frac{1}{2} (\vec{AM} + \vec{AC}) = \frac{1}{2}(\frac{1}{2} \vec{AB} + \vec{AC}) = \frac{1}{4} \vec{AB} + \frac{1}{2} \vec{AC}.
AL=AC+CL=AC+13CB=AC+13(ABAC)=13AB+23AC\vec{AL} = \vec{AC} + \vec{CL} = \vec{AC} + \frac{1}{3} \vec{CB} = \vec{AC} + \frac{1}{3} (\vec{AB} - \vec{AC}) = \frac{1}{3} \vec{AB} + \frac{2}{3} \vec{AC}.
Let's express AL\vec{AL} as a multiple of AN\vec{AN}, i.e., AL=kAN\vec{AL} = k \vec{AN} for some scalar kk.
13AB+23AC=k(14AB+12AC)\frac{1}{3} \vec{AB} + \frac{2}{3} \vec{AC} = k (\frac{1}{4} \vec{AB} + \frac{1}{2} \vec{AC}).
Equating coefficients:
13=k4    k=43\frac{1}{3} = \frac{k}{4} \implies k = \frac{4}{3}
23=k2    k=43\frac{2}{3} = \frac{k}{2} \implies k = \frac{4}{3}
Since the value of kk is consistent, AL=43AN\vec{AL} = \frac{4}{3} \vec{AN}, which means that AA, NN and LL are collinear.
2) a) We simply place the points according to the given conditions.
BI=32BC\vec{BI} = \frac{3}{2} \vec{BC} means that II lies on the line (BC)(BC), and BI=32BCBI = \frac{3}{2} BC.
CJ=13CA\vec{CJ} = \frac{1}{3} \vec{CA} means that JJ lies on the segment [CA][CA], and CJ=13CACJ = \frac{1}{3} CA.
AK=25AB\vec{AK} = \frac{2}{5} \vec{AB} means that KK lies on the segment [AB][AB], and AK=25ABAK = \frac{2}{5} AB.
b) To show that I,J,KI, J, K are collinear, we need to show that IJ\vec{IJ} and IK\vec{IK} are collinear.
IJ=IC+CJ=BCBI+13CA=BC32BC+13CA=12BC+13CA\vec{IJ} = \vec{IC} + \vec{CJ} = \vec{BC} - \vec{BI} + \frac{1}{3} \vec{CA} = \vec{BC} - \frac{3}{2} \vec{BC} + \frac{1}{3} \vec{CA} = -\frac{1}{2} \vec{BC} + \frac{1}{3} \vec{CA}.
IK=IA+AK=BABI+25AB=BA32BC+25AB=AB32BC+25AB=35AB32BC\vec{IK} = \vec{IA} + \vec{AK} = \vec{BA} - \vec{BI} + \frac{2}{5} \vec{AB} = \vec{BA} - \frac{3}{2} \vec{BC} + \frac{2}{5} \vec{AB} = -\vec{AB} - \frac{3}{2} \vec{BC} + \frac{2}{5} \vec{AB} = -\frac{3}{5} \vec{AB} - \frac{3}{2} \vec{BC}.
Since AB=CBCA=BCCA\vec{AB} = \vec{CB} - \vec{CA} = -\vec{BC} - \vec{CA},
IK=35(BCCA)32BC=35BC+35CA32BC=(3532)BC+35CA=(61510)BC+35CA=910BC+35CA\vec{IK} = -\frac{3}{5} (-\vec{BC} - \vec{CA}) - \frac{3}{2} \vec{BC} = \frac{3}{5} \vec{BC} + \frac{3}{5} \vec{CA} - \frac{3}{2} \vec{BC} = (\frac{3}{5} - \frac{3}{2}) \vec{BC} + \frac{3}{5} \vec{CA} = (\frac{6 - 15}{10}) \vec{BC} + \frac{3}{5} \vec{CA} = -\frac{9}{10} \vec{BC} + \frac{3}{5} \vec{CA}.
If IK=kIJ\vec{IK} = k \vec{IJ}, then 910BC+35CA=k(12BC+13CA)-\frac{9}{10} \vec{BC} + \frac{3}{5} \vec{CA} = k(-\frac{1}{2} \vec{BC} + \frac{1}{3} \vec{CA}).
Equating coefficients:
910=k2    k=1810=95-\frac{9}{10} = -\frac{k}{2} \implies k = \frac{18}{10} = \frac{9}{5}
35=k3    k=95\frac{3}{5} = \frac{k}{3} \implies k = \frac{9}{5}
Since the value of kk is consistent, II, JJ and KK are collinear.

3. Final Answer

1) b) The points AA, NN and LL are collinear.
2) b) The points II, JJ and KK are collinear.

Related problems in "Geometry"

The problem asks us to find the volume of a cylindrical litter bin in m³ to 2 decimal places (part a...

VolumeCylinderUnits ConversionProblem Solving
2025/6/10

We are given a triangle $ABC$ with $AB = 6$, $AC = 3$, and $\angle BAC = 120^\circ$. $AD$ is an angl...

TriangleAngle BisectorTrigonometryArea CalculationInradius
2025/6/10

The problem asks to find the values for I, JK, L, M, N, O, PQ, R, S, T, U, V, and W, based on the gi...

Triangle AreaInradiusGeometric Proofs
2025/6/10

In triangle $ABC$, $AB = 6$, $AC = 3$, and $\angle BAC = 120^{\circ}$. $D$ is the intersection of th...

TriangleLaw of CosinesAngle Bisector TheoremExternal Angle Bisector TheoremLength of SidesRatio
2025/6/10

A hunter on top of a tree sees an antelope at an angle of depression of $30^{\circ}$. The height of ...

TrigonometryRight TrianglesAngle of DepressionPythagorean Theorem
2025/6/10

A straight line passes through the points $(3, -2)$ and $(4, 5)$ and intersects the y-axis at $-23$....

Linear EquationsSlopeY-interceptCoordinate Geometry
2025/6/10

The problem states that the size of each interior angle of a regular polygon is $135^\circ$. We need...

PolygonsRegular PolygonsInterior AnglesExterior AnglesRotational Symmetry
2025/6/9

Y is 60 km away from X on a bearing of $135^{\circ}$. Z is 80 km away from X on a bearing of $225^{\...

TrigonometryBearingsCosine RuleRight Triangles
2025/6/8

The cross-section of a railway tunnel is shown. The length of the base $AB$ is 100 m, and the radius...

PerimeterArc LengthCircleRadius
2025/6/8

We are given a quadrilateral ABCD with the following angle measures: $\angle ABC = 14^{\circ}$, $\an...

QuadrilateralAnglesAngle SumReflex Angle
2025/6/8