The problem is about geometric properties of a triangle ABC. 1) a) Construct points $M$ and $N$ such that $\vec{AM} = -\frac{2}{3}\vec{AB}$ and $\vec{NA} = \frac{2}{3}\vec{AC}$. b) Prove that lines $(MN)$ and $(BC)$ are parallel. c) Let $S$ and $T$ be the midpoints of $[BC]$ and $[MN]$ respectively. Prove that points $A$, $S$, and $T$ are collinear. 2) a) Construct points $I$ and $J$ such that $\vec{AI} = \frac{1}{3}\vec{AB}$ and $\vec{AJ} = 3\vec{AC}$. b) Prove that lines $(BJ)$ and $(IC)$ are parallel.

GeometryVectorsTriangle GeometryParallel LinesCollinearity
2025/4/5

1. Problem Description

The problem is about geometric properties of a triangle ABC.
1) a) Construct points MM and NN such that AM=23AB\vec{AM} = -\frac{2}{3}\vec{AB} and NA=23AC\vec{NA} = \frac{2}{3}\vec{AC}.
b) Prove that lines (MN)(MN) and (BC)(BC) are parallel.
c) Let SS and TT be the midpoints of [BC][BC] and [MN][MN] respectively. Prove that points AA, SS, and TT are collinear.
2) a) Construct points II and JJ such that AI=13AB\vec{AI} = \frac{1}{3}\vec{AB} and AJ=3AC\vec{AJ} = 3\vec{AC}.
b) Prove that lines (BJ)(BJ) and (IC)(IC) are parallel.

2. Solution Steps

1) b)
We want to show that (MN)(MN) and (BC)(BC) are parallel. This means that the vectors MN\vec{MN} and BC\vec{BC} are collinear.
We have MN=MA+AN=AMNA=(23AB)(23AC)=23AB23AC=23(ABAC)=23(AB+CA)=23CB=23BC\vec{MN} = \vec{MA} + \vec{AN} = -\vec{AM} - \vec{NA} = - (-\frac{2}{3}\vec{AB}) - (\frac{2}{3}\vec{AC}) = \frac{2}{3}\vec{AB} - \frac{2}{3}\vec{AC} = \frac{2}{3}(\vec{AB} - \vec{AC}) = \frac{2}{3}(\vec{AB} + \vec{CA}) = \frac{2}{3}\vec{CB} = -\frac{2}{3}\vec{BC}.
Since MN=23BC\vec{MN} = -\frac{2}{3}\vec{BC}, the vectors MN\vec{MN} and BC\vec{BC} are collinear, which means the lines (MN)(MN) and (BC)(BC) are parallel.
1) c)
SS is the midpoint of [BC][BC], so AS=12(AB+AC)\vec{AS} = \frac{1}{2}(\vec{AB} + \vec{AC}).
TT is the midpoint of [MN][MN], so AT=12(AM+AN)\vec{AT} = \frac{1}{2}(\vec{AM} + \vec{AN}).
AM=23AB\vec{AM} = -\frac{2}{3}\vec{AB} and AN=NA=23AC\vec{AN} = -\vec{NA} = -\frac{2}{3}\vec{AC}.
Thus, AT=12(23AB23AC)=13(AB+AC)\vec{AT} = \frac{1}{2}(-\frac{2}{3}\vec{AB} - \frac{2}{3}\vec{AC}) = -\frac{1}{3}(\vec{AB} + \vec{AC}).
Then, AT=2312(AB+AC)=23AS\vec{AT} = -\frac{2}{3} \cdot \frac{1}{2} (\vec{AB} + \vec{AC}) = -\frac{2}{3} \vec{AS}.
Since AT\vec{AT} is a scalar multiple of AS\vec{AS}, the vectors AT\vec{AT} and AS\vec{AS} are collinear. This means that the points AA, SS, and TT are collinear.
2) b)
We want to show that (BJ)(BJ) and (IC)(IC) are parallel, which means that BJ\vec{BJ} and IC\vec{IC} are collinear.
BJ=BA+AJ=AB+3AC\vec{BJ} = \vec{BA} + \vec{AJ} = -\vec{AB} + 3\vec{AC}.
IC=IA+AC=AI+AC=13AB+AC\vec{IC} = \vec{IA} + \vec{AC} = -\vec{AI} + \vec{AC} = -\frac{1}{3}\vec{AB} + \vec{AC}.
BJ=3(13AB+AC)=3IC\vec{BJ} = 3(-\frac{1}{3}\vec{AB} + \vec{AC}) = 3\vec{IC}.
Since BJ=3IC\vec{BJ} = 3\vec{IC}, the vectors BJ\vec{BJ} and IC\vec{IC} are collinear, so the lines (BJ)(BJ) and (IC)(IC) are parallel.

3. Final Answer

1) b) (MN)(MN) and (BC)(BC) are parallel.
1) c) AA, SS, and TT are collinear.
2) b) (BJ)(BJ) and (IC)(IC) are parallel.

Related problems in "Geometry"

We are asked to find the area of the largest rectangle that can be inscribed in the ellipse given by...

EllipseOptimizationAreaCalculus
2025/4/11

We are given an ellipse with equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where $a \neq b$. We ...

EllipseTangentsAnalytic GeometryCoordinate GeometryQuadratic Equations
2025/4/11

We are asked to find the area of the largest rectangle that can be inscribed in the ellipse given by...

EllipseOptimizationCalculusAreaRectangle
2025/4/11

The problem asks us to identify which of the given conditions (AAS, SSS, SAS, SSA) is *not* a suffic...

Triangle CongruenceCongruence TheoremsAASSSSSASSSA
2025/4/10

We are given a circle with center $O$. Points $L$, $M$, and $N$ are on the circumference. We are giv...

Circle GeometryAngles in a TriangleCentral AngleInscribed Angle
2025/4/10

In the diagram, $O$ is the center of the circle, and $\overline{PQ}$ and $\overline{RS}$ are tangent...

Circle GeometryTangentsAnglesQuadrilaterals
2025/4/10

We are given a diagram where $PQ$ is a straight line. We have angles $x$, $y$, $z$ and $m$ such that...

AnglesStraight LinesAlgebraic Manipulation
2025/4/10

Question 37 asks to find the sum of the interior angles of a pentagon. Question 38 asks to calculate...

PolygonInterior AnglesSphereVolumeApproximation
2025/4/10

We are asked to find the lateral area ($L$) and surface area ($S$) of a triangular prism. The base o...

PrismsSurface AreaLateral AreaTriangles3D GeometryArea Calculation
2025/4/10

The problem asks us to find the surface area of a prism, given that the lateral area of the prism is...

Surface AreaPrismsArea CalculationGeometric ShapesPentagonEquilateral TriangleRectangle
2025/4/10