The problem is about geometric properties of a triangle ABC. 1) a) Construct points $M$ and $N$ such that $\vec{AM} = -\frac{2}{3}\vec{AB}$ and $\vec{NA} = \frac{2}{3}\vec{AC}$. b) Prove that lines $(MN)$ and $(BC)$ are parallel. c) Let $S$ and $T$ be the midpoints of $[BC]$ and $[MN]$ respectively. Prove that points $A$, $S$, and $T$ are collinear. 2) a) Construct points $I$ and $J$ such that $\vec{AI} = \frac{1}{3}\vec{AB}$ and $\vec{AJ} = 3\vec{AC}$. b) Prove that lines $(BJ)$ and $(IC)$ are parallel.

GeometryVectorsTriangle GeometryParallel LinesCollinearity
2025/4/5

1. Problem Description

The problem is about geometric properties of a triangle ABC.
1) a) Construct points MM and NN such that AM=23AB\vec{AM} = -\frac{2}{3}\vec{AB} and NA=23AC\vec{NA} = \frac{2}{3}\vec{AC}.
b) Prove that lines (MN)(MN) and (BC)(BC) are parallel.
c) Let SS and TT be the midpoints of [BC][BC] and [MN][MN] respectively. Prove that points AA, SS, and TT are collinear.
2) a) Construct points II and JJ such that AI=13AB\vec{AI} = \frac{1}{3}\vec{AB} and AJ=3AC\vec{AJ} = 3\vec{AC}.
b) Prove that lines (BJ)(BJ) and (IC)(IC) are parallel.

2. Solution Steps

1) b)
We want to show that (MN)(MN) and (BC)(BC) are parallel. This means that the vectors MN\vec{MN} and BC\vec{BC} are collinear.
We have MN=MA+AN=AMNA=(23AB)(23AC)=23AB23AC=23(ABAC)=23(AB+CA)=23CB=23BC\vec{MN} = \vec{MA} + \vec{AN} = -\vec{AM} - \vec{NA} = - (-\frac{2}{3}\vec{AB}) - (\frac{2}{3}\vec{AC}) = \frac{2}{3}\vec{AB} - \frac{2}{3}\vec{AC} = \frac{2}{3}(\vec{AB} - \vec{AC}) = \frac{2}{3}(\vec{AB} + \vec{CA}) = \frac{2}{3}\vec{CB} = -\frac{2}{3}\vec{BC}.
Since MN=23BC\vec{MN} = -\frac{2}{3}\vec{BC}, the vectors MN\vec{MN} and BC\vec{BC} are collinear, which means the lines (MN)(MN) and (BC)(BC) are parallel.
1) c)
SS is the midpoint of [BC][BC], so AS=12(AB+AC)\vec{AS} = \frac{1}{2}(\vec{AB} + \vec{AC}).
TT is the midpoint of [MN][MN], so AT=12(AM+AN)\vec{AT} = \frac{1}{2}(\vec{AM} + \vec{AN}).
AM=23AB\vec{AM} = -\frac{2}{3}\vec{AB} and AN=NA=23AC\vec{AN} = -\vec{NA} = -\frac{2}{3}\vec{AC}.
Thus, AT=12(23AB23AC)=13(AB+AC)\vec{AT} = \frac{1}{2}(-\frac{2}{3}\vec{AB} - \frac{2}{3}\vec{AC}) = -\frac{1}{3}(\vec{AB} + \vec{AC}).
Then, AT=2312(AB+AC)=23AS\vec{AT} = -\frac{2}{3} \cdot \frac{1}{2} (\vec{AB} + \vec{AC}) = -\frac{2}{3} \vec{AS}.
Since AT\vec{AT} is a scalar multiple of AS\vec{AS}, the vectors AT\vec{AT} and AS\vec{AS} are collinear. This means that the points AA, SS, and TT are collinear.
2) b)
We want to show that (BJ)(BJ) and (IC)(IC) are parallel, which means that BJ\vec{BJ} and IC\vec{IC} are collinear.
BJ=BA+AJ=AB+3AC\vec{BJ} = \vec{BA} + \vec{AJ} = -\vec{AB} + 3\vec{AC}.
IC=IA+AC=AI+AC=13AB+AC\vec{IC} = \vec{IA} + \vec{AC} = -\vec{AI} + \vec{AC} = -\frac{1}{3}\vec{AB} + \vec{AC}.
BJ=3(13AB+AC)=3IC\vec{BJ} = 3(-\frac{1}{3}\vec{AB} + \vec{AC}) = 3\vec{IC}.
Since BJ=3IC\vec{BJ} = 3\vec{IC}, the vectors BJ\vec{BJ} and IC\vec{IC} are collinear, so the lines (BJ)(BJ) and (IC)(IC) are parallel.

3. Final Answer

1) b) (MN)(MN) and (BC)(BC) are parallel.
1) c) AA, SS, and TT are collinear.
2) b) (BJ)(BJ) and (IC)(IC) are parallel.

Related problems in "Geometry"

The problem consists of two parts: (a) A window is in the shape of a semi-circle with radius 70 cm. ...

CircleSemi-circlePerimeterBase ConversionNumber Systems
2025/6/11

The problem asks us to find the volume of a cylindrical litter bin in m³ to 2 decimal places (part a...

VolumeCylinderUnits ConversionProblem Solving
2025/6/10

We are given a triangle $ABC$ with $AB = 6$, $AC = 3$, and $\angle BAC = 120^\circ$. $AD$ is an angl...

TriangleAngle BisectorTrigonometryArea CalculationInradius
2025/6/10

The problem asks to find the values for I, JK, L, M, N, O, PQ, R, S, T, U, V, and W, based on the gi...

Triangle AreaInradiusGeometric Proofs
2025/6/10

In triangle $ABC$, $AB = 6$, $AC = 3$, and $\angle BAC = 120^{\circ}$. $D$ is the intersection of th...

TriangleLaw of CosinesAngle Bisector TheoremExternal Angle Bisector TheoremLength of SidesRatio
2025/6/10

A hunter on top of a tree sees an antelope at an angle of depression of $30^{\circ}$. The height of ...

TrigonometryRight TrianglesAngle of DepressionPythagorean Theorem
2025/6/10

A straight line passes through the points $(3, -2)$ and $(4, 5)$ and intersects the y-axis at $-23$....

Linear EquationsSlopeY-interceptCoordinate Geometry
2025/6/10

The problem states that the size of each interior angle of a regular polygon is $135^\circ$. We need...

PolygonsRegular PolygonsInterior AnglesExterior AnglesRotational Symmetry
2025/6/9

Y is 60 km away from X on a bearing of $135^{\circ}$. Z is 80 km away from X on a bearing of $225^{\...

TrigonometryBearingsCosine RuleRight Triangles
2025/6/8

The cross-section of a railway tunnel is shown. The length of the base $AB$ is 100 m, and the radius...

PerimeterArc LengthCircleRadius
2025/6/8