The image presents several quadratic expressions. We need to factorize the following expressions: 23. $4a^2 - 4a + 1$ 24. $12x^2 + 17x - 14$ 25. $48x^2 + 46x + 5$ 26. $64y^2 + 4y - 3$ 27. $9x^2 - 1$ 28. $4a^2 - 9$

AlgebraFactorizationQuadratic ExpressionsFactoring by GroupingDifference of SquaresPerfect Square Trinomial
2025/8/6

1. Problem Description

The image presents several quadratic expressions. We need to factorize the following expressions:
2

3. $4a^2 - 4a + 1$

2

4. $12x^2 + 17x - 14$

2

5. $48x^2 + 46x + 5$

2

6. $64y^2 + 4y - 3$

2

7. $9x^2 - 1$

2

8. $4a^2 - 9$

2. Solution Steps

2

9. $4a^2 - 4a + 1$

This expression is a perfect square trinomial. We can rewrite it as (2a)22(2a)(1)+(1)2(2a)^2 - 2(2a)(1) + (1)^2.
Using the formula (xy)2=x22xy+y2(x-y)^2 = x^2 - 2xy + y^2, we can factor it as:
4a24a+1=(2a1)2=(2a1)(2a1)4a^2 - 4a + 1 = (2a - 1)^2 = (2a - 1)(2a - 1).
3

0. $12x^2 + 17x - 14$

We are looking for two numbers that multiply to (12)(14)=168(12)(-14) = -168 and add up to 1717. The numbers are 2424 and 7-7.
Rewrite the middle term as 17x=24x7x17x = 24x - 7x.
12x2+17x14=12x2+24x7x1412x^2 + 17x - 14 = 12x^2 + 24x - 7x - 14
Factor by grouping: 12x(x+2)7(x+2)=(12x7)(x+2)12x(x + 2) - 7(x + 2) = (12x - 7)(x + 2).
3

1. $48x^2 + 46x + 5$

We are looking for two numbers that multiply to (48)(5)=240(48)(5) = 240 and add up to 4646. The numbers are 66 and 4040.
Rewrite the middle term as 46x=6x+40x46x = 6x + 40x.
48x2+46x+5=48x2+6x+40x+548x^2 + 46x + 5 = 48x^2 + 6x + 40x + 5
Factor by grouping: 6x(8x+1)+5(8x+1)=(6x+5)(8x+1)6x(8x + 1) + 5(8x + 1) = (6x + 5)(8x + 1).
3

2. $64y^2 + 4y - 3$

We are looking for two numbers that multiply to (64)(3)=192(64)(-3) = -192 and add up to 44. The numbers are 1616 and 12-12.
Rewrite the middle term as 4y=16y12y4y = 16y - 12y.
64y2+4y3=64y2+16y12y364y^2 + 4y - 3 = 64y^2 + 16y - 12y - 3
Factor by grouping: 16y(4y+1)3(4y+1)=(16y3)(4y+1)16y(4y + 1) - 3(4y + 1) = (16y - 3)(4y + 1).
3

3. $9x^2 - 1$

This expression is a difference of squares. We can rewrite it as (3x)2(1)2(3x)^2 - (1)^2.
Using the formula a2b2=(ab)(a+b)a^2 - b^2 = (a - b)(a + b), we can factor it as:
9x21=(3x1)(3x+1)9x^2 - 1 = (3x - 1)(3x + 1).
3

4. $4a^2 - 9$

This expression is also a difference of squares. We can rewrite it as (2a)2(3)2(2a)^2 - (3)^2.
Using the formula a2b2=(ab)(a+b)a^2 - b^2 = (a - b)(a + b), we can factor it as:
4a29=(2a3)(2a+3)4a^2 - 9 = (2a - 3)(2a + 3).

3. Final Answer

3

5. $(2a - 1)(2a - 1)$

3

6. $(12x - 7)(x + 2)$

3

7. $(6x + 5)(8x + 1)$

3

8. $(16y - 3)(4y + 1)$

3

9. $(3x - 1)(3x + 1)$

4

0. $(2a - 3)(2a + 3)$