We can use the quadratic formula to solve for x. The quadratic formula for ax2+bx+c=0 is given by: x=2a−b±b2−4ac In this case, a=i, b=2(1+i) and c=1. Substituting these values into the quadratic formula:
x=2i−2(1+i)±(2(1+i))2−4(i)(1) First, let's simplify the expression under the square root:
(2(1+i))2−4(i)(1)=4(1+i)2−4i=4(1+2i+i2)−4i=4(1+2i−1)−4i=4(2i)−4i=8i−4i=4i So,
x=2i−2(1+i)±4i We need to find the square root of 4i. Let 4i=a+bi. Then (a+bi)2=4i, which means a2+2abi−b2=4i. Equating the real and imaginary parts, we have:
a2−b2=0 and 2ab=4, which implies ab=2. From the first equation, a2=b2, so a=b or a=−b. Since ab=2>0, a and b must have the same sign, so we have a=b. Substituting a=b into ab=2, we get a2=2, so a=2 or a=−2. Then b=2 or b=−2. Therefore, 4i=2+i2 or 4i=−2−i2. We can take 4i=2+i2=2(1+i). Substituting this back into the equation for x: x=2i−2(1+i)±2(1+i)=2i(1+i)(−2±2) x=2i(1+i)(−2±2)⋅−i−i=2(1+i)(−2±2)(−i)=2(1+i)(2i∓2i)=22i∓2i−2∓2 x=2−2∓2+i(2∓2)=−1∓22+i(1∓22) So the two possible values of x are x=−1−22+i(1−22) and x=−1+22+i(1+22). x=2i−2(1+i)±4i=2i−2(1+i)±2i=i−(1+i)±i Let i=21+i, then x=i−1−i±21+i=(−1−i±21+i)−i2−i=(−1−i±21+i)(−i)=i+i2∓2i−1=i−1∓2i−1=−1∓2−1+i∓21=−1±21+i(1±21) x=−1±22+i(1±22)