与えられた式 $a^2(b-c) + b^2(c-a) + c^2(a-b)$ を因数分解する問題です。

代数学因数分解多項式
2025/8/7

1. 問題の内容

与えられた式 a2(bc)+b2(ca)+c2(ab)a^2(b-c) + b^2(c-a) + c^2(a-b) を因数分解する問題です。

2. 解き方の手順

まず、式を展開します。
a2(bc)+b2(ca)+c2(ab)=a2ba2c+b2cab2+c2abc2a^2(b-c) + b^2(c-a) + c^2(a-b) = a^2b - a^2c + b^2c - ab^2 + c^2a - bc^2
次に、この式をaaについて整理します。
a2ba2c+b2cab2+c2abc2=(bc)a2+(c2b2)a+(b2cbc2)a^2b - a^2c + b^2c - ab^2 + c^2a - bc^2 = (b-c)a^2 + (c^2 - b^2)a + (b^2c - bc^2)
さらに、b2c2=(bc)(b+c)b^2 - c^2 = (b-c)(b+c)と、b2cbc2=bc(bc)b^2c - bc^2 = bc(b-c)を利用して式を整理します。
(bc)a2+(c2b2)a+(b2cbc2)=(bc)a2(bc)(b+c)a+bc(bc)(b-c)a^2 + (c^2 - b^2)a + (b^2c - bc^2) = (b-c)a^2 - (b-c)(b+c)a + bc(b-c)
(bc)(b-c)で括り出します。
(bc)a2(bc)(b+c)a+bc(bc)=(bc)[a2(b+c)a+bc](b-c)a^2 - (b-c)(b+c)a + bc(b-c) = (b-c)[a^2 - (b+c)a + bc]
括弧の中身を因数分解します。
a2(b+c)a+bc=(ab)(ac)a^2 - (b+c)a + bc = (a-b)(a-c)
したがって、与えられた式は以下のように因数分解できます。
a2(bc)+b2(ca)+c2(ab)=(bc)(ab)(ac)=(ab)(bc)(ca)a^2(b-c) + b^2(c-a) + c^2(a-b) = (b-c)(a-b)(a-c) = -(a-b)(b-c)(c-a)

3. 最終的な答え

因数分解された形は (ab)(bc)(ca)-(a-b)(b-c)(c-a) です。

「代数学」の関連問題

連続する3つの正の整数がある。最も大きい数と最も小さい数の積が、真ん中の数の4倍より44大きいとき、この連続する3つの整数を求めなさい。

方程式整数因数分解二次方程式
2025/8/9

$a=6, b=-8$ のとき、以下の2つの式の値を求めます。 (1) $(5a-4b)-(6a-b)$ (2) $2(6a+b)-3(5a-b)$ (3) $(-2a^2b)^2 \times 4a...

式の計算文字式の計算代入展開
2025/8/9

与えられた数式を簡略化し、その後 $a=6$, $b=-8$ を代入して計算します。 数式は次の通りです。 $(-2a^2b)^2 \times 4ab^2 \div (-8a^3b^2)$

式の簡略化代入指数法則
2025/8/9

$a=6$, $b=-8$のとき、与えられた式の値を求めます。問題は4つありますが、今回は(1)~(3)を扱います。 (1) $(5a-4b)-(6a-b)$ (2) $2(6a+b)-3(5a-b)...

式の計算代入文字式多項式
2025/8/9

$a = 6$、 $b = -8$ のとき、次の式の値を求めます。 (1) $(5a - 4b) - (6a - b)$ (2) $2(6a + b) - 3(5a - b)$

式の計算文字式代入
2025/8/9

2次方程式 $x^2 + ax - 16 = 0$ の解が整数 $b, c$ であるとき、$b/c$ が整数になる $b, c$ の値の組は何通りあるか。ただし、$b > c$ とする。

二次方程式解と係数の関係整数の性質
2025/8/9

$a$ を正の定数とする。2次関数 $y = 4x - x^2$ について、以下の問いに答えよ。 (1) 2次関数のグラフを描き、軸と頂点を求めよ。 (2) 範囲 $0 \le x \le a$ にお...

二次関数グラフ最大値最小値定義域
2025/8/9

二次方程式 $(x - a)^2 = 36$ の解のうち、大きい方の解が $9$ であるとき、$a$ の値を求める。

二次方程式解の公式平方根
2025/8/9

$x$ の2次方程式 $x^2 + 2ax + a^2 + 5a - 7 = 0$ が実数解をもつような定数 $a$ の値の範囲を求める。

二次方程式判別式実数解不等式
2025/8/9

## 1. 問題の内容

展開計算因数分解連立不等式二次方程式判別式
2025/8/9