Simplify the expression $\sqrt{75} - \sqrt{192}$.AlgebraSimplificationRadicalsSquare RootsAlgebraic Manipulation2025/3/111. Problem DescriptionSimplify the expression 75−192\sqrt{75} - \sqrt{192}75−192.2. Solution StepsWe simplify each term separately.75=25⋅3=25⋅3=53\sqrt{75} = \sqrt{25 \cdot 3} = \sqrt{25} \cdot \sqrt{3} = 5\sqrt{3}75=25⋅3=25⋅3=53192=64⋅3=64⋅3=83\sqrt{192} = \sqrt{64 \cdot 3} = \sqrt{64} \cdot \sqrt{3} = 8\sqrt{3}192=64⋅3=64⋅3=83Then, we substitute the simplified terms back into the expression:75−192=53−83=(5−8)3=−33\sqrt{75} - \sqrt{192} = 5\sqrt{3} - 8\sqrt{3} = (5-8)\sqrt{3} = -3\sqrt{3}75−192=53−83=(5−8)3=−333. Final Answer−33-3\sqrt{3}−33