The problem is to solve the equation $\frac{-\frac{7}{4}}{x-2} = \frac{2-x}{7}$ for $x$.

AlgebraEquationsRational EquationsSolving EquationsQuadratic Equations
2025/6/4

1. Problem Description

The problem is to solve the equation 74x2=2x7\frac{-\frac{7}{4}}{x-2} = \frac{2-x}{7} for xx.

2. Solution Steps

First, simplify the left-hand side (LHS) of the equation:
74x2=74(x2)\frac{-\frac{7}{4}}{x-2} = \frac{-7}{4(x-2)}
So the equation becomes:
74(x2)=2x7\frac{-7}{4(x-2)} = \frac{2-x}{7}
Cross-multiply:
7(7)=4(x2)(2x)-7(7) = 4(x-2)(2-x)
49=4(x2)(2x)-49 = 4(x-2)(2-x)
49=4(x2)(x2)-49 = -4(x-2)(x-2)
49=4(x2)2-49 = -4(x-2)^2
Divide both sides by 4-4:
494=(x2)2\frac{49}{4} = (x-2)^2
Take the square root of both sides:
x2=±494x-2 = \pm \sqrt{\frac{49}{4}}
x2=±72x-2 = \pm \frac{7}{2}
Solve for xx in both cases:
Case 1: x2=72x-2 = \frac{7}{2}
x=2+72x = 2 + \frac{7}{2}
x=42+72x = \frac{4}{2} + \frac{7}{2}
x=112x = \frac{11}{2}
Case 2: x2=72x-2 = -\frac{7}{2}
x=272x = 2 - \frac{7}{2}
x=4272x = \frac{4}{2} - \frac{7}{2}
x=32x = -\frac{3}{2}

3. Final Answer

x=112x = \frac{11}{2} or x=32x = -\frac{3}{2}