The problem is to evaluate the expression $\sqrt{24} + \sqrt{96} - \sqrt{150}$.ArithmeticRadicalsSimplificationSquare Roots2025/3/111. Problem DescriptionThe problem is to evaluate the expression 24+96−150\sqrt{24} + \sqrt{96} - \sqrt{150}24+96−150.2. Solution StepsFirst, simplify each square root.24=4⋅6=4⋅6=26\sqrt{24} = \sqrt{4 \cdot 6} = \sqrt{4} \cdot \sqrt{6} = 2\sqrt{6}24=4⋅6=4⋅6=2696=16⋅6=16⋅6=46\sqrt{96} = \sqrt{16 \cdot 6} = \sqrt{16} \cdot \sqrt{6} = 4\sqrt{6}96=16⋅6=16⋅6=46150=25⋅6=25⋅6=56\sqrt{150} = \sqrt{25 \cdot 6} = \sqrt{25} \cdot \sqrt{6} = 5\sqrt{6}150=25⋅6=25⋅6=56Now substitute the simplified radicals into the original expression.26+46−56=(2+4−5)6=(6−5)6=16=62\sqrt{6} + 4\sqrt{6} - 5\sqrt{6} = (2 + 4 - 5)\sqrt{6} = (6 - 5)\sqrt{6} = 1\sqrt{6} = \sqrt{6}26+46−56=(2+4−5)6=(6−5)6=16=63. Final Answer6\sqrt{6}6