We are asked to simplify the expression $\sqrt{320} - \sqrt{80} + \sqrt{\frac{25}{9}}$.ArithmeticRadicalsSimplificationSquare RootsArithmetic Operations2025/3/111. Problem DescriptionWe are asked to simplify the expression 320−80+259\sqrt{320} - \sqrt{80} + \sqrt{\frac{25}{9}}320−80+925.2. Solution StepsFirst, we simplify the radicals 320\sqrt{320}320 and 80\sqrt{80}80.320=64⋅5=64⋅5=85\sqrt{320} = \sqrt{64 \cdot 5} = \sqrt{64} \cdot \sqrt{5} = 8\sqrt{5}320=64⋅5=64⋅5=8580=16⋅5=16⋅5=45\sqrt{80} = \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{5} = 4\sqrt{5}80=16⋅5=16⋅5=45Then we simplify 259\sqrt{\frac{25}{9}}925.259=259=53\sqrt{\frac{25}{9}} = \frac{\sqrt{25}}{\sqrt{9}} = \frac{5}{3}925=925=35Now, we substitute these values into the original expression:320−80+259=85−45+53=(8−4)5+53=45+53\sqrt{320} - \sqrt{80} + \sqrt{\frac{25}{9}} = 8\sqrt{5} - 4\sqrt{5} + \frac{5}{3} = (8-4)\sqrt{5} + \frac{5}{3} = 4\sqrt{5} + \frac{5}{3}320−80+925=85−45+35=(8−4)5+35=45+353. Final Answer45+534\sqrt{5} + \frac{5}{3}45+35