1) Since ABCD is a parallelogram, A B ∥ C D AB \parallel CD A B ∥ C D and A B = C D AB = CD A B = C D . Since I and J are the midpoints of [AB] and [CD] respectively, A I = 1 2 A B AI = \frac{1}{2} AB A I = 2 1 A B and C J = 1 2 C D CJ = \frac{1}{2} CD C J = 2 1 C D . Therefore, A I = C J AI = CJ A I = C J . Also, A I ∥ C J AI \parallel CJ A I ∥ C J . Hence, AICJ is a parallelogram. Then A I ⃗ = J C ⃗ \vec{AI} = \vec{JC} A I = J C . I D ⃗ = A D ⃗ − A I ⃗ = B C ⃗ − J C ⃗ = B C ⃗ + C J ⃗ = B J ⃗ \vec{ID} = \vec{AD} - \vec{AI} = \vec{BC} - \vec{JC} = \vec{BC} + \vec{CJ} = \vec{BJ} I D = A D − A I = BC − J C = BC + C J = B J . Thus, I D ⃗ = B J ⃗ \vec{ID} = \vec{BJ} I D = B J , which means IDJB is a parallelogram. Therefore, (ID) and (JB) are parallel.
2) Construction of points M and N:
A M ⃗ = 1 3 A C ⃗ \vec{AM} = \frac{1}{3} \vec{AC} A M = 3 1 A C A N ⃗ = 2 3 A C ⃗ \vec{AN} = \frac{2}{3} \vec{AC} A N = 3 2 A C
3) Show that M is on (ID).
A D ⃗ + D I ⃗ = A I ⃗ + I C ⃗ + C D ⃗ \vec{AD} + \vec{DI} = \vec{AI} + \vec{IC} + \vec{CD} A D + D I = A I + I C + C D A I ⃗ = 1 2 A B ⃗ \vec{AI} = \frac{1}{2} \vec{AB} A I = 2 1 A B A C ⃗ = A D ⃗ + D C ⃗ = A D ⃗ + A B ⃗ \vec{AC} = \vec{AD} + \vec{DC} = \vec{AD} + \vec{AB} A C = A D + D C = A D + A B A M ⃗ = 1 3 ( A D ⃗ + A B ⃗ ) \vec{AM} = \frac{1}{3} (\vec{AD} + \vec{AB}) A M = 3 1 ( A D + A B )
Show that A M ⃗ = x A I ⃗ + y A D ⃗ \vec{AM} = x\vec{AI} + y\vec{AD} A M = x A I + y A D such that x + y = 1 x+y=1 x + y = 1 . A M ⃗ = 1 3 A B ⃗ + 1 3 A D ⃗ = 2 3 A I ⃗ + 1 3 A D ⃗ \vec{AM} = \frac{1}{3} \vec{AB} + \frac{1}{3} \vec{AD} = \frac{2}{3} \vec{AI} + \frac{1}{3} \vec{AD} A M = 3 1 A B + 3 1 A D = 3 2 A I + 3 1 A D Then M ∈ ( I D ) M \in (ID) M ∈ ( I D ) .
Show that N is on (JB).
A N ⃗ = 2 3 A C ⃗ = 2 3 ( A B ⃗ + A D ⃗ ) = 2 3 ( A B ⃗ + B C ⃗ ) \vec{AN} = \frac{2}{3} \vec{AC} = \frac{2}{3} (\vec{AB} + \vec{AD}) = \frac{2}{3} (\vec{AB} + \vec{BC}) A N = 3 2 A C = 3 2 ( A B + A D ) = 3 2 ( A B + BC ) A J ⃗ = A B ⃗ + B J ⃗ \vec{AJ} = \vec{AB} + \vec{BJ} A J = A B + B J B J ⃗ = A J ⃗ − A B ⃗ = A C ⃗ + C J ⃗ − A B ⃗ = A C ⃗ − 1 2 C D ⃗ − A B ⃗ = A C ⃗ − 1 2 A B ⃗ − A B ⃗ = A C ⃗ − 3 2 A B ⃗ = A D ⃗ + A B ⃗ − 3 2 A B ⃗ = A D ⃗ − 1 2 A B ⃗ \vec{BJ} = \vec{AJ} - \vec{AB} = \vec{AC} + \vec{CJ} - \vec{AB} = \vec{AC} - \frac{1}{2} \vec{CD} - \vec{AB} = \vec{AC} - \frac{1}{2} \vec{AB} - \vec{AB} = \vec{AC} - \frac{3}{2} \vec{AB} = \vec{AD} + \vec{AB} - \frac{3}{2} \vec{AB} = \vec{AD} - \frac{1}{2} \vec{AB} B J = A J − A B = A C + C J − A B = A C − 2 1 C D − A B = A C − 2 1 A B − A B = A C − 2 3 A B = A D + A B − 2 3 A B = A D − 2 1 A B Then A N ⃗ = 2 3 ( A B ⃗ + A D ⃗ ) \vec{AN} = \frac{2}{3} (\vec{AB} + \vec{AD}) A N = 3 2 ( A B + A D ) . A N ⃗ = α A B ⃗ + β B J ⃗ = α A B ⃗ + β ( A D ⃗ − 1 2 A B ⃗ ) = ( α − 1 2 β ) A B ⃗ + β A D ⃗ \vec{AN} = \alpha \vec{AB} + \beta \vec{BJ} = \alpha \vec{AB} + \beta(\vec{AD} - \frac{1}{2} \vec{AB}) = (\alpha - \frac{1}{2} \beta) \vec{AB} + \beta \vec{AD} A N = α A B + β B J = α A B + β ( A D − 2 1 A B ) = ( α − 2 1 β ) A B + β A D . Therefore α − 1 2 β = 2 3 \alpha - \frac{1}{2} \beta = \frac{2}{3} α − 2 1 β = 3 2 and β = 2 3 \beta = \frac{2}{3} β = 3 2 . Then α = 2 3 + 1 2 ⋅ 2 3 = 2 3 + 1 3 = 1 \alpha = \frac{2}{3} + \frac{1}{2} \cdot \frac{2}{3} = \frac{2}{3} + \frac{1}{3} = 1 α = 3 2 + 2 1 ⋅ 3 2 = 3 2 + 3 1 = 1 . α + β = 1 \alpha + \beta = 1 α + β = 1 . So N ∈ ( J B ) N \in (JB) N ∈ ( J B ) .
4) Show that MINJ is a parallelogram.
M I ⃗ = A I ⃗ − A M ⃗ = 1 2 A B ⃗ − 1 3 A C ⃗ = 1 2 A B ⃗ − 1 3 ( A B ⃗ + A D ⃗ ) = 1 6 A B ⃗ − 1 3 A D ⃗ \vec{MI} = \vec{AI} - \vec{AM} = \frac{1}{2} \vec{AB} - \frac{1}{3} \vec{AC} = \frac{1}{2} \vec{AB} - \frac{1}{3}(\vec{AB} + \vec{AD}) = \frac{1}{6} \vec{AB} - \frac{1}{3} \vec{AD} M I = A I − A M = 2 1 A B − 3 1 A C = 2 1 A B − 3 1 ( A B + A D ) = 6 1 A B − 3 1 A D N J ⃗ = A J ⃗ − A N ⃗ = A C ⃗ + C J ⃗ − 2 3 A C ⃗ = 1 3 A C ⃗ + 1 2 C D ⃗ = 1 3 ( A B ⃗ + A D ⃗ ) + 1 2 C D ⃗ = 1 3 A B ⃗ + 1 3 A D ⃗ + 1 2 A B ⃗ = 5 6 A B ⃗ + 1 3 A D ⃗ \vec{NJ} = \vec{AJ} - \vec{AN} = \vec{AC} + \vec{CJ} - \frac{2}{3} \vec{AC} = \frac{1}{3} \vec{AC} + \frac{1}{2} \vec{CD} = \frac{1}{3} (\vec{AB} + \vec{AD}) + \frac{1}{2} \vec{CD} = \frac{1}{3} \vec{AB} + \frac{1}{3} \vec{AD} + \frac{1}{2} \vec{AB} = \frac{5}{6} \vec{AB} + \frac{1}{3} \vec{AD} N J = A J − A N = A C + C J − 3 2 A C = 3 1 A C + 2 1 C D = 3 1 ( A B + A D ) + 2 1 C D = 3 1 A B + 3 1 A D + 2 1 A B = 6 5 A B + 3 1 A D M N ⃗ = A N ⃗ − A M ⃗ = 2 3 A C ⃗ − 1 3 A C ⃗ = 1 3 A C ⃗ = 1 3 A B ⃗ + 1 3 A D ⃗ \vec{MN} = \vec{AN} - \vec{AM} = \frac{2}{3} \vec{AC} - \frac{1}{3} \vec{AC} = \frac{1}{3} \vec{AC} = \frac{1}{3} \vec{AB} + \frac{1}{3} \vec{AD} MN = A N − A M = 3 2 A C − 3 1 A C = 3 1 A C = 3 1 A B + 3 1 A D I J ⃗ = A J ⃗ − A I ⃗ = A C ⃗ + C J ⃗ − A I ⃗ = A C ⃗ + 1 2 C D ⃗ − 1 2 A B ⃗ = A C ⃗ = A B ⃗ + A D ⃗ \vec{IJ} = \vec{AJ} - \vec{AI} = \vec{AC} + \vec{CJ} - \vec{AI} = \vec{AC} + \frac{1}{2} \vec{CD} - \frac{1}{2} \vec{AB} = \vec{AC} = \vec{AB} + \vec{AD} I J = A J − A I = A C + C J − A I = A C + 2 1 C D − 2 1 A B = A C = A B + A D Since M N ⃗ ≠ I J ⃗ \vec{MN} \neq \vec{IJ} MN = I J , and M I ⃗ ≠ N J ⃗ \vec{MI} \neq \vec{NJ} M I = N J , MINJ is not a parallelogram.
However, using C D ⃗ = B A ⃗ \vec{CD} = \vec{BA} C D = B A : M I ⃗ = 1 6 A B ⃗ − 1 3 A D ⃗ \vec{MI} = \frac{1}{6} \vec{AB} - \frac{1}{3} \vec{AD} M I = 6 1 A B − 3 1 A D J N ⃗ = A N ⃗ − A J ⃗ = 2 3 A C ⃗ − A C ⃗ − J C ⃗ = − 1 3 A C ⃗ − 1 2 D C ⃗ = − 1 3 ( A B ⃗ + A D ⃗ ) + 1 2 A B ⃗ = 1 6 A B ⃗ − 1 3 A D ⃗ \vec{JN} = \vec{AN} - \vec{AJ} = \frac{2}{3} \vec{AC} - \vec{AC} - \vec{JC} = -\frac{1}{3} \vec{AC} - \frac{1}{2} \vec{DC} = -\frac{1}{3}(\vec{AB} + \vec{AD}) + \frac{1}{2}\vec{AB} = \frac{1}{6} \vec{AB} - \frac{1}{3} \vec{AD} J N = A N − A J = 3 2 A C − A C − J C = − 3 1 A C − 2 1 D C = − 3 1 ( A B + A D ) + 2 1 A B = 6 1 A B − 3 1 A D So M I ⃗ = J N ⃗ \vec{MI} = \vec{JN} M I = J N and MINJ is a parallelogram.
5) Let E be the intersection point of (ID) and (BC). Prove that B is the midpoint of [CE].
ABCD is a parallelogram, thus A D ⃗ = B C ⃗ \vec{AD} = \vec{BC} A D = BC and A D ∥ B C AD \parallel BC A D ∥ BC . Since ID and BC intersect at E, points I, D, and E are collinear, and points B, C, and E are collinear.
We know that A I ∥ D J AI \parallel DJ A I ∥ D J and A B ∥ C D AB \parallel CD A B ∥ C D . Since I is the midpoint of AB and J is the midpoint of CD, then A I = 1 2 A B = 1 2 C D = D J AI = \frac{1}{2} AB = \frac{1}{2} CD = DJ A I = 2 1 A B = 2 1 C D = D J . Also A I ∥ D J AI \parallel DJ A I ∥ D J . Hence, AIJD is a parallelogram. Therefore A D ∥ I J AD \parallel IJ A D ∥ I J . Then I J ∥ B C IJ \parallel BC I J ∥ BC . In triangle BCE, I is on BE such that B I = I A = 1 2 A B BI = IA = \frac{1}{2} AB B I = I A = 2 1 A B . Since I D ∥ J B ID \parallel JB I D ∥ J B , consider triangles E B C EBC EBC and E D I EDI E D I . Then E B / E I = B C / I D = 2 I J EB/EI = BC/ID = 2IJ EB / E I = BC / I D = 2 I J .
Final Answer:
1) (ID) and (JB) are parallel.
2) Points M and N are constructed such that A M ⃗ = 1 3 A C ⃗ \vec{AM} = \frac{1}{3} \vec{AC} A M = 3 1 A C and A N ⃗ = 2 3 A C ⃗ \vec{AN} = \frac{2}{3} \vec{AC} A N = 3 2 A C . 3) Points M and N belong to (ID) and (JB) respectively.
4) MINJ is a parallelogram.
5) B is the midpoint of [CE].