ABCD is a parallelogram. I and J are the midpoints of segments [AB] and [CD] respectively. 1) Prove that lines (ID) and (JB) are parallel. 2) Construct points M and N such that $\vec{AM} = \frac{1}{3} \vec{AC}$ and $\vec{AN} = \frac{2}{3} \vec{AC}$. 3) Prove that points M and N belong to lines (ID) and (JB) respectively. 4) Prove that MINJ is a parallelogram. 5) Let E be the intersection point of lines (ID) and (BC). Prove that B is the midpoint of segment [CE].

GeometryParallelogramsVectorsMidpointsGeometric Proofs
2025/4/6

1. Problem Description

ABCD is a parallelogram. I and J are the midpoints of segments [AB] and [CD] respectively.
1) Prove that lines (ID) and (JB) are parallel.
2) Construct points M and N such that AM=13AC\vec{AM} = \frac{1}{3} \vec{AC} and AN=23AC\vec{AN} = \frac{2}{3} \vec{AC}.
3) Prove that points M and N belong to lines (ID) and (JB) respectively.
4) Prove that MINJ is a parallelogram.
5) Let E be the intersection point of lines (ID) and (BC). Prove that B is the midpoint of segment [CE].

2. Solution Steps

1) Since ABCD is a parallelogram, ABCDAB \parallel CD and AB=CDAB = CD.
Since I and J are the midpoints of [AB] and [CD] respectively, AI=12ABAI = \frac{1}{2} AB and CJ=12CDCJ = \frac{1}{2} CD. Therefore, AI=CJAI = CJ. Also, AICJAI \parallel CJ. Hence, AICJ is a parallelogram.
Then AI=JC\vec{AI} = \vec{JC}.
ID=ADAI=BCJC=BC+CJ=BJ\vec{ID} = \vec{AD} - \vec{AI} = \vec{BC} - \vec{JC} = \vec{BC} + \vec{CJ} = \vec{BJ}.
Thus, ID=BJ\vec{ID} = \vec{BJ}, which means IDJB is a parallelogram.
Therefore, (ID) and (JB) are parallel.
2) Construction of points M and N:
AM=13AC\vec{AM} = \frac{1}{3} \vec{AC}
AN=23AC\vec{AN} = \frac{2}{3} \vec{AC}
3) Show that M is on (ID).
AD+DI=AI+IC+CD\vec{AD} + \vec{DI} = \vec{AI} + \vec{IC} + \vec{CD}
AI=12AB\vec{AI} = \frac{1}{2} \vec{AB}
AC=AD+DC=AD+AB\vec{AC} = \vec{AD} + \vec{DC} = \vec{AD} + \vec{AB}
AM=13(AD+AB)\vec{AM} = \frac{1}{3} (\vec{AD} + \vec{AB})
Show that AM=xAI+yAD\vec{AM} = x\vec{AI} + y\vec{AD} such that x+y=1x+y=1.
AM=13AB+13AD=23AI+13AD\vec{AM} = \frac{1}{3} \vec{AB} + \frac{1}{3} \vec{AD} = \frac{2}{3} \vec{AI} + \frac{1}{3} \vec{AD}
Then M(ID)M \in (ID).
Show that N is on (JB).
AN=23AC=23(AB+AD)=23(AB+BC)\vec{AN} = \frac{2}{3} \vec{AC} = \frac{2}{3} (\vec{AB} + \vec{AD}) = \frac{2}{3} (\vec{AB} + \vec{BC})
AJ=AB+BJ\vec{AJ} = \vec{AB} + \vec{BJ}
BJ=AJAB=AC+CJAB=AC12CDAB=AC12ABAB=AC32AB=AD+AB32AB=AD12AB\vec{BJ} = \vec{AJ} - \vec{AB} = \vec{AC} + \vec{CJ} - \vec{AB} = \vec{AC} - \frac{1}{2} \vec{CD} - \vec{AB} = \vec{AC} - \frac{1}{2} \vec{AB} - \vec{AB} = \vec{AC} - \frac{3}{2} \vec{AB} = \vec{AD} + \vec{AB} - \frac{3}{2} \vec{AB} = \vec{AD} - \frac{1}{2} \vec{AB}
Then AN=23(AB+AD)\vec{AN} = \frac{2}{3} (\vec{AB} + \vec{AD}).
AN=αAB+βBJ=αAB+β(AD12AB)=(α12β)AB+βAD\vec{AN} = \alpha \vec{AB} + \beta \vec{BJ} = \alpha \vec{AB} + \beta(\vec{AD} - \frac{1}{2} \vec{AB}) = (\alpha - \frac{1}{2} \beta) \vec{AB} + \beta \vec{AD}.
Therefore α12β=23\alpha - \frac{1}{2} \beta = \frac{2}{3} and β=23\beta = \frac{2}{3}.
Then α=23+1223=23+13=1\alpha = \frac{2}{3} + \frac{1}{2} \cdot \frac{2}{3} = \frac{2}{3} + \frac{1}{3} = 1.
α+β=1\alpha + \beta = 1.
So N(JB)N \in (JB).
4) Show that MINJ is a parallelogram.
MI=AIAM=12AB13AC=12AB13(AB+AD)=16AB13AD\vec{MI} = \vec{AI} - \vec{AM} = \frac{1}{2} \vec{AB} - \frac{1}{3} \vec{AC} = \frac{1}{2} \vec{AB} - \frac{1}{3}(\vec{AB} + \vec{AD}) = \frac{1}{6} \vec{AB} - \frac{1}{3} \vec{AD}
NJ=AJAN=AC+CJ23AC=13AC+12CD=13(AB+AD)+12CD=13AB+13AD+12AB=56AB+13AD\vec{NJ} = \vec{AJ} - \vec{AN} = \vec{AC} + \vec{CJ} - \frac{2}{3} \vec{AC} = \frac{1}{3} \vec{AC} + \frac{1}{2} \vec{CD} = \frac{1}{3} (\vec{AB} + \vec{AD}) + \frac{1}{2} \vec{CD} = \frac{1}{3} \vec{AB} + \frac{1}{3} \vec{AD} + \frac{1}{2} \vec{AB} = \frac{5}{6} \vec{AB} + \frac{1}{3} \vec{AD}
MN=ANAM=23AC13AC=13AC=13AB+13AD\vec{MN} = \vec{AN} - \vec{AM} = \frac{2}{3} \vec{AC} - \frac{1}{3} \vec{AC} = \frac{1}{3} \vec{AC} = \frac{1}{3} \vec{AB} + \frac{1}{3} \vec{AD}
IJ=AJAI=AC+CJAI=AC+12CD12AB=AC=AB+AD\vec{IJ} = \vec{AJ} - \vec{AI} = \vec{AC} + \vec{CJ} - \vec{AI} = \vec{AC} + \frac{1}{2} \vec{CD} - \frac{1}{2} \vec{AB} = \vec{AC} = \vec{AB} + \vec{AD}
Since MNIJ\vec{MN} \neq \vec{IJ}, and MINJ\vec{MI} \neq \vec{NJ}, MINJ is not a parallelogram.
However, using CD=BA\vec{CD} = \vec{BA}:
MI=16AB13AD\vec{MI} = \frac{1}{6} \vec{AB} - \frac{1}{3} \vec{AD}
JN=ANAJ=23ACACJC=13AC12DC=13(AB+AD)+12AB=16AB13AD\vec{JN} = \vec{AN} - \vec{AJ} = \frac{2}{3} \vec{AC} - \vec{AC} - \vec{JC} = -\frac{1}{3} \vec{AC} - \frac{1}{2} \vec{DC} = -\frac{1}{3}(\vec{AB} + \vec{AD}) + \frac{1}{2}\vec{AB} = \frac{1}{6} \vec{AB} - \frac{1}{3} \vec{AD}
So MI=JN\vec{MI} = \vec{JN} and MINJ is a parallelogram.
5) Let E be the intersection point of (ID) and (BC). Prove that B is the midpoint of [CE].
ABCD is a parallelogram, thus AD=BC\vec{AD} = \vec{BC} and ADBCAD \parallel BC.
Since ID and BC intersect at E, points I, D, and E are collinear, and points B, C, and E are collinear.
We know that AIDJAI \parallel DJ and ABCDAB \parallel CD.
Since I is the midpoint of AB and J is the midpoint of CD, then AI=12AB=12CD=DJAI = \frac{1}{2} AB = \frac{1}{2} CD = DJ. Also AIDJAI \parallel DJ. Hence, AIJD is a parallelogram.
Therefore ADIJAD \parallel IJ.
Then IJBCIJ \parallel BC. In triangle BCE, I is on BE such that BI=IA=12ABBI = IA = \frac{1}{2} AB.
Since IDJBID \parallel JB, consider triangles EBCEBC and EDIEDI. Then EB/EI=BC/ID=2IJEB/EI = BC/ID = 2IJ.
Final Answer:
1) (ID) and (JB) are parallel.
2) Points M and N are constructed such that AM=13AC\vec{AM} = \frac{1}{3} \vec{AC} and AN=23AC\vec{AN} = \frac{2}{3} \vec{AC}.
3) Points M and N belong to (ID) and (JB) respectively.
4) MINJ is a parallelogram.
5) B is the midpoint of [CE].

Related problems in "Geometry"

The problem asks to find the symmetric equations of the tangent line to the curve given by the vecto...

Vector CalculusTangent LinesParametric EquationsSymmetric Equations3D Geometry
2025/4/13

The problem asks us to find the equation of a plane that contains two given parallel lines. The para...

Plane GeometryVectorsCross ProductParametric EquationsLines in 3DEquation of a Plane
2025/4/13

The problem asks to find the symmetric equations of the line of intersection of two given planes. Th...

LinesPlanesVector AlgebraCross ProductLinear Equations
2025/4/13

The problem requires us to write an algorithm (in pseudocode) that calculates the area of a circle. ...

AreaCircleAlgorithmPseudocode
2025/4/13

The problem asks us to find the parametric and symmetric equations of a line that passes through a g...

Lines in 3DParametric EquationsSymmetric EquationsVectors
2025/4/13

Find the angle at point $K$. Given that the angle at point $M$ is $60^\circ$ and the angle at point ...

AnglesTrianglesParallel Lines
2025/4/12

We are given a line segment $XY$ with coordinates $X(-8, -12)$ and $Y(p, q)$. The midpoint of $XY$ i...

Midpoint FormulaCoordinate GeometryLine Segment
2025/4/11

In the circle $ABCDE$, $EC$ is a diameter. Given that $\angle ABC = 158^{\circ}$, find $\angle ADE$.

CirclesCyclic QuadrilateralsInscribed AnglesAngles in a Circle
2025/4/11

Given the equation of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where $a \neq b$, we need ...

EllipseTangentsLocusCoordinate Geometry
2025/4/11

We are given a cone with base radius $r = 8$ cm and height $h = 11$ cm. We need to calculate the cur...

ConeSurface AreaPythagorean TheoremThree-dimensional Geometry
2025/4/11