ABCD is a parallelogram. I and J are the midpoints of segments [AB] and [CD] respectively. 1) Prove that lines (ID) and (JB) are parallel. 2) Construct points M and N such that $\vec{AM} = \frac{1}{3} \vec{AC}$ and $\vec{AN} = \frac{2}{3} \vec{AC}$. 3) Prove that points M and N belong to lines (ID) and (JB) respectively. 4) Prove that MINJ is a parallelogram. 5) Let E be the intersection point of lines (ID) and (BC). Prove that B is the midpoint of segment [CE].

GeometryParallelogramsVectorsMidpointsGeometric Proofs
2025/4/6

1. Problem Description

ABCD is a parallelogram. I and J are the midpoints of segments [AB] and [CD] respectively.
1) Prove that lines (ID) and (JB) are parallel.
2) Construct points M and N such that AM=13AC\vec{AM} = \frac{1}{3} \vec{AC} and AN=23AC\vec{AN} = \frac{2}{3} \vec{AC}.
3) Prove that points M and N belong to lines (ID) and (JB) respectively.
4) Prove that MINJ is a parallelogram.
5) Let E be the intersection point of lines (ID) and (BC). Prove that B is the midpoint of segment [CE].

2. Solution Steps

1) Since ABCD is a parallelogram, ABCDAB \parallel CD and AB=CDAB = CD.
Since I and J are the midpoints of [AB] and [CD] respectively, AI=12ABAI = \frac{1}{2} AB and CJ=12CDCJ = \frac{1}{2} CD. Therefore, AI=CJAI = CJ. Also, AICJAI \parallel CJ. Hence, AICJ is a parallelogram.
Then AI=JC\vec{AI} = \vec{JC}.
ID=ADAI=BCJC=BC+CJ=BJ\vec{ID} = \vec{AD} - \vec{AI} = \vec{BC} - \vec{JC} = \vec{BC} + \vec{CJ} = \vec{BJ}.
Thus, ID=BJ\vec{ID} = \vec{BJ}, which means IDJB is a parallelogram.
Therefore, (ID) and (JB) are parallel.
2) Construction of points M and N:
AM=13AC\vec{AM} = \frac{1}{3} \vec{AC}
AN=23AC\vec{AN} = \frac{2}{3} \vec{AC}
3) Show that M is on (ID).
AD+DI=AI+IC+CD\vec{AD} + \vec{DI} = \vec{AI} + \vec{IC} + \vec{CD}
AI=12AB\vec{AI} = \frac{1}{2} \vec{AB}
AC=AD+DC=AD+AB\vec{AC} = \vec{AD} + \vec{DC} = \vec{AD} + \vec{AB}
AM=13(AD+AB)\vec{AM} = \frac{1}{3} (\vec{AD} + \vec{AB})
Show that AM=xAI+yAD\vec{AM} = x\vec{AI} + y\vec{AD} such that x+y=1x+y=1.
AM=13AB+13AD=23AI+13AD\vec{AM} = \frac{1}{3} \vec{AB} + \frac{1}{3} \vec{AD} = \frac{2}{3} \vec{AI} + \frac{1}{3} \vec{AD}
Then M(ID)M \in (ID).
Show that N is on (JB).
AN=23AC=23(AB+AD)=23(AB+BC)\vec{AN} = \frac{2}{3} \vec{AC} = \frac{2}{3} (\vec{AB} + \vec{AD}) = \frac{2}{3} (\vec{AB} + \vec{BC})
AJ=AB+BJ\vec{AJ} = \vec{AB} + \vec{BJ}
BJ=AJAB=AC+CJAB=AC12CDAB=AC12ABAB=AC32AB=AD+AB32AB=AD12AB\vec{BJ} = \vec{AJ} - \vec{AB} = \vec{AC} + \vec{CJ} - \vec{AB} = \vec{AC} - \frac{1}{2} \vec{CD} - \vec{AB} = \vec{AC} - \frac{1}{2} \vec{AB} - \vec{AB} = \vec{AC} - \frac{3}{2} \vec{AB} = \vec{AD} + \vec{AB} - \frac{3}{2} \vec{AB} = \vec{AD} - \frac{1}{2} \vec{AB}
Then AN=23(AB+AD)\vec{AN} = \frac{2}{3} (\vec{AB} + \vec{AD}).
AN=αAB+βBJ=αAB+β(AD12AB)=(α12β)AB+βAD\vec{AN} = \alpha \vec{AB} + \beta \vec{BJ} = \alpha \vec{AB} + \beta(\vec{AD} - \frac{1}{2} \vec{AB}) = (\alpha - \frac{1}{2} \beta) \vec{AB} + \beta \vec{AD}.
Therefore α12β=23\alpha - \frac{1}{2} \beta = \frac{2}{3} and β=23\beta = \frac{2}{3}.
Then α=23+1223=23+13=1\alpha = \frac{2}{3} + \frac{1}{2} \cdot \frac{2}{3} = \frac{2}{3} + \frac{1}{3} = 1.
α+β=1\alpha + \beta = 1.
So N(JB)N \in (JB).
4) Show that MINJ is a parallelogram.
MI=AIAM=12AB13AC=12AB13(AB+AD)=16AB13AD\vec{MI} = \vec{AI} - \vec{AM} = \frac{1}{2} \vec{AB} - \frac{1}{3} \vec{AC} = \frac{1}{2} \vec{AB} - \frac{1}{3}(\vec{AB} + \vec{AD}) = \frac{1}{6} \vec{AB} - \frac{1}{3} \vec{AD}
NJ=AJAN=AC+CJ23AC=13AC+12CD=13(AB+AD)+12CD=13AB+13AD+12AB=56AB+13AD\vec{NJ} = \vec{AJ} - \vec{AN} = \vec{AC} + \vec{CJ} - \frac{2}{3} \vec{AC} = \frac{1}{3} \vec{AC} + \frac{1}{2} \vec{CD} = \frac{1}{3} (\vec{AB} + \vec{AD}) + \frac{1}{2} \vec{CD} = \frac{1}{3} \vec{AB} + \frac{1}{3} \vec{AD} + \frac{1}{2} \vec{AB} = \frac{5}{6} \vec{AB} + \frac{1}{3} \vec{AD}
MN=ANAM=23AC13AC=13AC=13AB+13AD\vec{MN} = \vec{AN} - \vec{AM} = \frac{2}{3} \vec{AC} - \frac{1}{3} \vec{AC} = \frac{1}{3} \vec{AC} = \frac{1}{3} \vec{AB} + \frac{1}{3} \vec{AD}
IJ=AJAI=AC+CJAI=AC+12CD12AB=AC=AB+AD\vec{IJ} = \vec{AJ} - \vec{AI} = \vec{AC} + \vec{CJ} - \vec{AI} = \vec{AC} + \frac{1}{2} \vec{CD} - \frac{1}{2} \vec{AB} = \vec{AC} = \vec{AB} + \vec{AD}
Since MNIJ\vec{MN} \neq \vec{IJ}, and MINJ\vec{MI} \neq \vec{NJ}, MINJ is not a parallelogram.
However, using CD=BA\vec{CD} = \vec{BA}:
MI=16AB13AD\vec{MI} = \frac{1}{6} \vec{AB} - \frac{1}{3} \vec{AD}
JN=ANAJ=23ACACJC=13AC12DC=13(AB+AD)+12AB=16AB13AD\vec{JN} = \vec{AN} - \vec{AJ} = \frac{2}{3} \vec{AC} - \vec{AC} - \vec{JC} = -\frac{1}{3} \vec{AC} - \frac{1}{2} \vec{DC} = -\frac{1}{3}(\vec{AB} + \vec{AD}) + \frac{1}{2}\vec{AB} = \frac{1}{6} \vec{AB} - \frac{1}{3} \vec{AD}
So MI=JN\vec{MI} = \vec{JN} and MINJ is a parallelogram.
5) Let E be the intersection point of (ID) and (BC). Prove that B is the midpoint of [CE].
ABCD is a parallelogram, thus AD=BC\vec{AD} = \vec{BC} and ADBCAD \parallel BC.
Since ID and BC intersect at E, points I, D, and E are collinear, and points B, C, and E are collinear.
We know that AIDJAI \parallel DJ and ABCDAB \parallel CD.
Since I is the midpoint of AB and J is the midpoint of CD, then AI=12AB=12CD=DJAI = \frac{1}{2} AB = \frac{1}{2} CD = DJ. Also AIDJAI \parallel DJ. Hence, AIJD is a parallelogram.
Therefore ADIJAD \parallel IJ.
Then IJBCIJ \parallel BC. In triangle BCE, I is on BE such that BI=IA=12ABBI = IA = \frac{1}{2} AB.
Since IDJBID \parallel JB, consider triangles EBCEBC and EDIEDI. Then EB/EI=BC/ID=2IJEB/EI = BC/ID = 2IJ.
Final Answer:
1) (ID) and (JB) are parallel.
2) Points M and N are constructed such that AM=13AC\vec{AM} = \frac{1}{3} \vec{AC} and AN=23AC\vec{AN} = \frac{2}{3} \vec{AC}.
3) Points M and N belong to (ID) and (JB) respectively.
4) MINJ is a parallelogram.
5) B is the midpoint of [CE].

Related problems in "Geometry"

The problem asks us to find the volume of a cylindrical litter bin in m³ to 2 decimal places (part a...

VolumeCylinderUnits ConversionProblem Solving
2025/6/10

We are given a triangle $ABC$ with $AB = 6$, $AC = 3$, and $\angle BAC = 120^\circ$. $AD$ is an angl...

TriangleAngle BisectorTrigonometryArea CalculationInradius
2025/6/10

The problem asks to find the values for I, JK, L, M, N, O, PQ, R, S, T, U, V, and W, based on the gi...

Triangle AreaInradiusGeometric Proofs
2025/6/10

In triangle $ABC$, $AB = 6$, $AC = 3$, and $\angle BAC = 120^{\circ}$. $D$ is the intersection of th...

TriangleLaw of CosinesAngle Bisector TheoremExternal Angle Bisector TheoremLength of SidesRatio
2025/6/10

A hunter on top of a tree sees an antelope at an angle of depression of $30^{\circ}$. The height of ...

TrigonometryRight TrianglesAngle of DepressionPythagorean Theorem
2025/6/10

A straight line passes through the points $(3, -2)$ and $(4, 5)$ and intersects the y-axis at $-23$....

Linear EquationsSlopeY-interceptCoordinate Geometry
2025/6/10

The problem states that the size of each interior angle of a regular polygon is $135^\circ$. We need...

PolygonsRegular PolygonsInterior AnglesExterior AnglesRotational Symmetry
2025/6/9

Y is 60 km away from X on a bearing of $135^{\circ}$. Z is 80 km away from X on a bearing of $225^{\...

TrigonometryBearingsCosine RuleRight Triangles
2025/6/8

The cross-section of a railway tunnel is shown. The length of the base $AB$ is 100 m, and the radius...

PerimeterArc LengthCircleRadius
2025/6/8

We are given a quadrilateral ABCD with the following angle measures: $\angle ABC = 14^{\circ}$, $\an...

QuadrilateralAnglesAngle SumReflex Angle
2025/6/8