The problem requires us to evaluate the natural logarithm (ln) of several expressions involving the constant $e$. We need to evaluate the following: 1. $ln(\frac{1}{e^{12}})$
2025/4/7
1. Problem Description
The problem requires us to evaluate the natural logarithm (ln) of several expressions involving the constant . We need to evaluate the following:
1. $ln(\frac{1}{e^{12}})$
2. $ln(\sqrt[3]{e^8})$
3. $ln(e)$
4. $ln(\frac{1}{e})$
5. $ln(e^7)$
6. $ln(\sqrt[8]{e})$
7. $ln(\frac{1}{\sqrt{e^5}})$
2. Solution Steps
We will use the following properties of logarithms:
*
*
*
*
*
1. $ln(\frac{1}{e^{12}}) = ln(e^{-12}) = -12$
2. $ln(\sqrt[3]{e^8}) = ln((e^8)^{\frac{1}{3}}) = ln(e^{\frac{8}{3}}) = \frac{8}{3}$
3. $ln(e) = 1$
4. $ln(\frac{1}{e}) = ln(e^{-1}) = -1$
5. $ln(e^7) = 7$
6. $ln(\sqrt[8]{e}) = ln(e^{\frac{1}{8}}) = \frac{1}{8}$
7. $ln(\frac{1}{\sqrt{e^5}}) = ln(\frac{1}{e^{\frac{5}{2}}}) = ln(e^{-\frac{5}{2}}) = -\frac{5}{2}$
3. Final Answer
Here are the answers to the given expressions: