We are given a triangle $ABC$ with side $a = 7.82$ cm, side $b = 14.35$ cm, and angle $B = 115^\circ$. We need to solve the triangle, meaning we need to find the remaining angle $A$, angle $C$, and side $c$.

GeometryTriangleLaw of SinesTrigonometryAngle CalculationSide Calculation
2025/3/12

1. Problem Description

We are given a triangle ABCABC with side a=7.82a = 7.82 cm, side b=14.35b = 14.35 cm, and angle B=115B = 115^\circ. We need to solve the triangle, meaning we need to find the remaining angle AA, angle CC, and side cc.

2. Solution Steps

We can use the Law of Sines to find the angle AA:
asinA=bsinB\frac{a}{\sin A} = \frac{b}{\sin B}
7.82sinA=14.35sin115\frac{7.82}{\sin A} = \frac{14.35}{\sin 115^\circ}
sinA=7.82sin11514.35\sin A = \frac{7.82 \cdot \sin 115^\circ}{14.35}
sinA=7.820.906314.35\sin A = \frac{7.82 \cdot 0.9063}{14.35}
sinA=7.088314.35\sin A = \frac{7.0883}{14.35}
sinA=0.4939\sin A = 0.4939
A=arcsin(0.4939)A = \arcsin(0.4939)
A29.60A \approx 29.60^\circ
Now we can find angle CC using the fact that the sum of angles in a triangle is 180180^\circ:
A+B+C=180A + B + C = 180^\circ
C=180ABC = 180^\circ - A - B
C=18029.60115C = 180^\circ - 29.60^\circ - 115^\circ
C=35.40C = 35.40^\circ
Now we can use the Law of Sines again to find side cc:
csinC=bsinB\frac{c}{\sin C} = \frac{b}{\sin B}
csin35.40=14.35sin115\frac{c}{\sin 35.40^\circ} = \frac{14.35}{\sin 115^\circ}
c=14.35sin35.40sin115c = \frac{14.35 \cdot \sin 35.40^\circ}{\sin 115^\circ}
c=14.350.57930.9063c = \frac{14.35 \cdot 0.5793}{0.9063}
c=8.31340.9063c = \frac{8.3134}{0.9063}
c9.17c \approx 9.17 cm

3. Final Answer

A29.60A \approx 29.60^\circ
C35.40C \approx 35.40^\circ
c9.17c \approx 9.17 cm

Related problems in "Geometry"

Point P moves on the circle $(x-6)^2 + y^2 = 9$. Find the locus of point Q which divides the line se...

LocusCirclesCoordinate Geometry
2025/6/12

We are given three points $A(5, 2)$, $B(-1, 0)$, and $C(3, -2)$. (1) We need to find the equation of...

CircleCircumcircleEquation of a CircleCoordinate GeometryCircumcenterRadius
2025/6/12

The problem consists of two parts: (a) A window is in the shape of a semi-circle with radius 70 cm. ...

CircleSemi-circlePerimeterBase ConversionNumber Systems
2025/6/11

The problem asks us to find the volume of a cylindrical litter bin in m³ to 2 decimal places (part a...

VolumeCylinderUnits ConversionProblem Solving
2025/6/10

We are given a triangle $ABC$ with $AB = 6$, $AC = 3$, and $\angle BAC = 120^\circ$. $AD$ is an angl...

TriangleAngle BisectorTrigonometryArea CalculationInradius
2025/6/10

The problem asks to find the values for I, JK, L, M, N, O, PQ, R, S, T, U, V, and W, based on the gi...

Triangle AreaInradiusGeometric Proofs
2025/6/10

In triangle $ABC$, $AB = 6$, $AC = 3$, and $\angle BAC = 120^{\circ}$. $D$ is the intersection of th...

TriangleLaw of CosinesAngle Bisector TheoremExternal Angle Bisector TheoremLength of SidesRatio
2025/6/10

A hunter on top of a tree sees an antelope at an angle of depression of $30^{\circ}$. The height of ...

TrigonometryRight TrianglesAngle of DepressionPythagorean Theorem
2025/6/10

A straight line passes through the points $(3, -2)$ and $(4, 5)$ and intersects the y-axis at $-23$....

Linear EquationsSlopeY-interceptCoordinate Geometry
2025/6/10

The problem states that the size of each interior angle of a regular polygon is $135^\circ$. We need...

PolygonsRegular PolygonsInterior AnglesExterior AnglesRotational Symmetry
2025/6/9