The problem asks to simplify the expression $(2x - 3)(3x^2 - 2x + 5)$.

AlgebraPolynomialsSimplificationDistributionFOIL method
2025/4/9

1. Problem Description

The problem asks to simplify the expression (2x3)(3x22x+5)(2x - 3)(3x^2 - 2x + 5).

2. Solution Steps

To simplify the expression, we need to multiply the two polynomials. We can use the distributive property (also known as the FOIL method for binomials).
(2x3)(3x22x+5)=2x(3x22x+5)3(3x22x+5)(2x - 3)(3x^2 - 2x + 5) = 2x(3x^2 - 2x + 5) - 3(3x^2 - 2x + 5)
Now, we distribute 2x2x and 3-3 to each term in the second polynomial:
2x(3x2)+2x(2x)+2x(5)3(3x2)3(2x)3(5)2x(3x^2) + 2x(-2x) + 2x(5) - 3(3x^2) - 3(-2x) - 3(5)
Multiplying each term:
6x34x2+10x9x2+6x156x^3 - 4x^2 + 10x - 9x^2 + 6x - 15
Now, combine like terms:
6x3+(4x29x2)+(10x+6x)156x^3 + (-4x^2 - 9x^2) + (10x + 6x) - 15
6x313x2+16x156x^3 - 13x^2 + 16x - 15

3. Final Answer

The simplified expression is 6x313x2+16x156x^3 - 13x^2 + 16x - 15.