The problem is to add two complex numbers: $(\frac{1}{2} + \frac{3}{4}i)$ and $(\frac{3}{2} + \frac{3}{4}i)$.

AlgebraComplex NumbersAddition
2025/4/9

1. Problem Description

The problem is to add two complex numbers: (12+34i)(\frac{1}{2} + \frac{3}{4}i) and (32+34i)(\frac{3}{2} + \frac{3}{4}i).

2. Solution Steps

To add complex numbers, we add the real parts together and the imaginary parts together.
Real parts: 12+32\frac{1}{2} + \frac{3}{2}
Imaginary parts: 34i+34i\frac{3}{4}i + \frac{3}{4}i
Adding the real parts:
12+32=1+32=42=2\frac{1}{2} + \frac{3}{2} = \frac{1+3}{2} = \frac{4}{2} = 2
Adding the imaginary parts:
34i+34i=(34+34)i=3+34i=64i=32i\frac{3}{4}i + \frac{3}{4}i = (\frac{3}{4} + \frac{3}{4})i = \frac{3+3}{4}i = \frac{6}{4}i = \frac{3}{2}i
Therefore, the sum of the two complex numbers is 2+32i2 + \frac{3}{2}i.

3. Final Answer

2+32i2 + \frac{3}{2}i