We are given three vectors, $a = -3i + 2j - 2k$, $b = -i + 2j - 4k$, and $c = 7i + 3j - 4k$. We need to find: (a) $a \times b$ (b) $a \times (b + c)$ (c) $a \cdot (b + c)$ (d) $a \times (b \times c)$

GeometryVectorsCross ProductDot Product3D Geometry
2025/4/9

1. Problem Description

We are given three vectors, a=3i+2j2ka = -3i + 2j - 2k, b=i+2j4kb = -i + 2j - 4k, and c=7i+3j4kc = 7i + 3j - 4k. We need to find:
(a) a×ba \times b
(b) a×(b+c)a \times (b + c)
(c) a(b+c)a \cdot (b + c)
(d) a×(b×c)a \times (b \times c)

2. Solution Steps

(a) a×ba \times b:
a×b=ijk322124=i(2(4)(2)(2))j((3)(4)(2)(1))+k((3)(2)(2)(1))=i(8+4)j(122)+k(6+2)=4i10j4ka \times b = \begin{vmatrix} i & j & k \\ -3 & 2 & -2 \\ -1 & 2 & -4 \end{vmatrix} = i(2(-4) - (-2)(2)) - j((-3)(-4) - (-2)(-1)) + k((-3)(2) - (2)(-1)) \\ = i(-8 + 4) - j(12 - 2) + k(-6 + 2) = -4i - 10j - 4k
(b) a×(b+c)a \times (b + c):
First, find b+c=(1+7)i+(2+3)j+(4+(4))k=6i+5j8kb + c = (-1 + 7)i + (2 + 3)j + (-4 + (-4))k = 6i + 5j - 8k.
Then, a×(b+c)=ijk322658=i(2(8)(2)(5))j((3)(8)(2)(6))+k((3)(5)(2)(6))=i(16+10)j(24+12)+k(1512)=6i36j27ka \times (b + c) = \begin{vmatrix} i & j & k \\ -3 & 2 & -2 \\ 6 & 5 & -8 \end{vmatrix} = i(2(-8) - (-2)(5)) - j((-3)(-8) - (-2)(6)) + k((-3)(5) - (2)(6)) \\ = i(-16 + 10) - j(24 + 12) + k(-15 - 12) = -6i - 36j - 27k
(c) a(b+c)a \cdot (b + c):
We already found b+c=6i+5j8kb + c = 6i + 5j - 8k.
a(b+c)=(3)(6)+(2)(5)+(2)(8)=18+10+16=8a \cdot (b + c) = (-3)(6) + (2)(5) + (-2)(-8) = -18 + 10 + 16 = 8
(d) a×(b×c)a \times (b \times c):
First, find b×c=ijk124734=i(2(4)(4)(3))j((1)(4)(4)(7))+k((1)(3)(2)(7))=i(8+12)j(4+28)+k(314)=4i32j17kb \times c = \begin{vmatrix} i & j & k \\ -1 & 2 & -4 \\ 7 & 3 & -4 \end{vmatrix} = i(2(-4) - (-4)(3)) - j((-1)(-4) - (-4)(7)) + k((-1)(3) - (2)(7)) \\ = i(-8 + 12) - j(4 + 28) + k(-3 - 14) = 4i - 32j - 17k
Then, a×(b×c)=ijk32243217=i(2(17)(2)(32))j((3)(17)(2)(4))+k((3)(32)(2)(4))=i(3464)j(51+8)+k(968)=98i59j+88ka \times (b \times c) = \begin{vmatrix} i & j & k \\ -3 & 2 & -2 \\ 4 & -32 & -17 \end{vmatrix} = i(2(-17) - (-2)(-32)) - j((-3)(-17) - (-2)(4)) + k((-3)(-32) - (2)(4)) \\ = i(-34 - 64) - j(51 + 8) + k(96 - 8) = -98i - 59j + 88k

3. Final Answer

(a) a×b=4i10j4ka \times b = -4i - 10j - 4k
(b) a×(b+c)=6i36j27ka \times (b + c) = -6i - 36j - 27k
(c) a(b+c)=8a \cdot (b + c) = 8
(d) a×(b×c)=98i59j+88ka \times (b \times c) = -98i - 59j + 88k

Related problems in "Geometry"

The problem consists of two parts: (a) A window is in the shape of a semi-circle with radius 70 cm. ...

CircleSemi-circlePerimeterBase ConversionNumber Systems
2025/6/11

The problem asks us to find the volume of a cylindrical litter bin in m³ to 2 decimal places (part a...

VolumeCylinderUnits ConversionProblem Solving
2025/6/10

We are given a triangle $ABC$ with $AB = 6$, $AC = 3$, and $\angle BAC = 120^\circ$. $AD$ is an angl...

TriangleAngle BisectorTrigonometryArea CalculationInradius
2025/6/10

The problem asks to find the values for I, JK, L, M, N, O, PQ, R, S, T, U, V, and W, based on the gi...

Triangle AreaInradiusGeometric Proofs
2025/6/10

In triangle $ABC$, $AB = 6$, $AC = 3$, and $\angle BAC = 120^{\circ}$. $D$ is the intersection of th...

TriangleLaw of CosinesAngle Bisector TheoremExternal Angle Bisector TheoremLength of SidesRatio
2025/6/10

A hunter on top of a tree sees an antelope at an angle of depression of $30^{\circ}$. The height of ...

TrigonometryRight TrianglesAngle of DepressionPythagorean Theorem
2025/6/10

A straight line passes through the points $(3, -2)$ and $(4, 5)$ and intersects the y-axis at $-23$....

Linear EquationsSlopeY-interceptCoordinate Geometry
2025/6/10

The problem states that the size of each interior angle of a regular polygon is $135^\circ$. We need...

PolygonsRegular PolygonsInterior AnglesExterior AnglesRotational Symmetry
2025/6/9

Y is 60 km away from X on a bearing of $135^{\circ}$. Z is 80 km away from X on a bearing of $225^{\...

TrigonometryBearingsCosine RuleRight Triangles
2025/6/8

The cross-section of a railway tunnel is shown. The length of the base $AB$ is 100 m, and the radius...

PerimeterArc LengthCircleRadius
2025/6/8