We are given three vectors, $a = -3i + 2j - 2k$, $b = -i + 2j - 4k$, and $c = 7i + 3j - 4k$. We need to find: (a) $a \times b$ (b) $a \times (b + c)$ (c) $a \cdot (b + c)$ (d) $a \times (b \times c)$

GeometryVectorsCross ProductDot Product3D Geometry
2025/4/9

1. Problem Description

We are given three vectors, a=3i+2j2ka = -3i + 2j - 2k, b=i+2j4kb = -i + 2j - 4k, and c=7i+3j4kc = 7i + 3j - 4k. We need to find:
(a) a×ba \times b
(b) a×(b+c)a \times (b + c)
(c) a(b+c)a \cdot (b + c)
(d) a×(b×c)a \times (b \times c)

2. Solution Steps

(a) a×ba \times b:
a×b=ijk322124=i(2(4)(2)(2))j((3)(4)(2)(1))+k((3)(2)(2)(1))=i(8+4)j(122)+k(6+2)=4i10j4ka \times b = \begin{vmatrix} i & j & k \\ -3 & 2 & -2 \\ -1 & 2 & -4 \end{vmatrix} = i(2(-4) - (-2)(2)) - j((-3)(-4) - (-2)(-1)) + k((-3)(2) - (2)(-1)) \\ = i(-8 + 4) - j(12 - 2) + k(-6 + 2) = -4i - 10j - 4k
(b) a×(b+c)a \times (b + c):
First, find b+c=(1+7)i+(2+3)j+(4+(4))k=6i+5j8kb + c = (-1 + 7)i + (2 + 3)j + (-4 + (-4))k = 6i + 5j - 8k.
Then, a×(b+c)=ijk322658=i(2(8)(2)(5))j((3)(8)(2)(6))+k((3)(5)(2)(6))=i(16+10)j(24+12)+k(1512)=6i36j27ka \times (b + c) = \begin{vmatrix} i & j & k \\ -3 & 2 & -2 \\ 6 & 5 & -8 \end{vmatrix} = i(2(-8) - (-2)(5)) - j((-3)(-8) - (-2)(6)) + k((-3)(5) - (2)(6)) \\ = i(-16 + 10) - j(24 + 12) + k(-15 - 12) = -6i - 36j - 27k
(c) a(b+c)a \cdot (b + c):
We already found b+c=6i+5j8kb + c = 6i + 5j - 8k.
a(b+c)=(3)(6)+(2)(5)+(2)(8)=18+10+16=8a \cdot (b + c) = (-3)(6) + (2)(5) + (-2)(-8) = -18 + 10 + 16 = 8
(d) a×(b×c)a \times (b \times c):
First, find b×c=ijk124734=i(2(4)(4)(3))j((1)(4)(4)(7))+k((1)(3)(2)(7))=i(8+12)j(4+28)+k(314)=4i32j17kb \times c = \begin{vmatrix} i & j & k \\ -1 & 2 & -4 \\ 7 & 3 & -4 \end{vmatrix} = i(2(-4) - (-4)(3)) - j((-1)(-4) - (-4)(7)) + k((-1)(3) - (2)(7)) \\ = i(-8 + 12) - j(4 + 28) + k(-3 - 14) = 4i - 32j - 17k
Then, a×(b×c)=ijk32243217=i(2(17)(2)(32))j((3)(17)(2)(4))+k((3)(32)(2)(4))=i(3464)j(51+8)+k(968)=98i59j+88ka \times (b \times c) = \begin{vmatrix} i & j & k \\ -3 & 2 & -2 \\ 4 & -32 & -17 \end{vmatrix} = i(2(-17) - (-2)(-32)) - j((-3)(-17) - (-2)(4)) + k((-3)(-32) - (2)(4)) \\ = i(-34 - 64) - j(51 + 8) + k(96 - 8) = -98i - 59j + 88k

3. Final Answer

(a) a×b=4i10j4ka \times b = -4i - 10j - 4k
(b) a×(b+c)=6i36j27ka \times (b + c) = -6i - 36j - 27k
(c) a(b+c)=8a \cdot (b + c) = 8
(d) a×(b×c)=98i59j+88ka \times (b \times c) = -98i - 59j + 88k

Related problems in "Geometry"

Find the angle at point $K$. Given that the angle at point $M$ is $60^\circ$ and the angle at point ...

AnglesTrianglesParallel Lines
2025/4/12

We are given a line segment $XY$ with coordinates $X(-8, -12)$ and $Y(p, q)$. The midpoint of $XY$ i...

Midpoint FormulaCoordinate GeometryLine Segment
2025/4/11

In the circle $ABCDE$, $EC$ is a diameter. Given that $\angle ABC = 158^{\circ}$, find $\angle ADE$.

CirclesCyclic QuadrilateralsInscribed AnglesAngles in a Circle
2025/4/11

Given the equation of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where $a \neq b$, we need ...

EllipseTangentsLocusCoordinate Geometry
2025/4/11

We are given a cone with base radius $r = 8$ cm and height $h = 11$ cm. We need to calculate the cur...

ConeSurface AreaPythagorean TheoremThree-dimensional Geometry
2025/4/11

$PQRS$ is a cyclic quadrilateral. We are given the measures of its angles in terms of $x$ and $y$. W...

Cyclic QuadrilateralAnglesLinear EquationsSolving Equations
2025/4/11

In the given diagram, line segment $MP$ is a tangent to circle $NQR$ at point $N$. $\angle PNQ = 64^...

Circle GeometryTangentsAnglesTrianglesIsosceles TriangleAlternate Segment Theorem
2025/4/11

We are given a diagram with two parallel lines intersected by two transversals. We need to find the ...

Parallel LinesTransversalsAnglesSupplementary Angles
2025/4/11

A trapezium with sides 10 cm and 21 cm, and height 8 cm is inscribed in a circle of radius 7 cm. The...

AreaTrapeziumCircleArea Calculation
2025/4/11

In circle $PQRS$ with center $O$, $\angle PQR = 72^\circ$ and $OR \parallel PS$. We need to find the...

Circle GeometryAnglesParallel LinesIsosceles Triangle
2025/4/11