ABCD are points on the circumference of a circle with center O. PD is a tangent to the circle at D. Given that $\angle ADB = 28^\circ$ and $\angle CBD = 47^\circ$, calculate the following angles: 1) $\angle BAD$ 2) $\angle CDP$ 3) $\angle CAB$ 4) $\angle BCD$

GeometryCirclesAnglesCyclic QuadrilateralsTangentsGeometry
2025/4/9

1. Problem Description

ABCD are points on the circumference of a circle with center O. PD is a tangent to the circle at D. Given that ADB=28\angle ADB = 28^\circ and CBD=47\angle CBD = 47^\circ, calculate the following angles:
1) BAD\angle BAD
2) CDP\angle CDP
3) CAB\angle CAB
4) BCD\angle BCD

2. Solution Steps

1) Calculation of BAD\angle BAD:
Angles subtended by the same chord at the circumference are equal. Therefore, CAD=CBD=47\angle CAD = \angle CBD = 47^\circ.
Also, BAD=CAD+BAD\angle BAD = \angle CAD + \angle BAD.
We are given ADB=28\angle ADB = 28^\circ
Angles subtended by the same chord at the circumference are equal. Therefore, ACB=ADB=28\angle ACB = \angle ADB = 28^\circ
Since BAD\angle BAD and BCD\angle BCD are opposite angles in a cyclic quadrilateral ABCDABCD, BAD+BCD=180\angle BAD + \angle BCD = 180^\circ.
ABD=ACD\angle ABD = \angle ACD (Angles subtended by the same chord)
BAD=CAD+DAB\angle BAD = \angle CAD + \angle DAB
BAD=CAD+BDC=47+28=75\angle BAD = \angle CAD + \angle BDC = 47^\circ + 28^\circ = 75^\circ
2) Calculation of CDP\angle CDP:
The angle between a tangent and a chord at the point of contact is equal to the angle in the alternate segment.
Therefore, CDP=CAD=47\angle CDP = \angle CAD = 47^\circ.
3) Calculation of CAB\angle CAB:
CAB=CDB\angle CAB = \angle CDB since they subtend the same arc.
Since CBD=47\angle CBD = 47^\circ and CDB=CAB\angle CDB = \angle CAB,
Also, ADB=ACB=28\angle ADB = \angle ACB = 28^\circ.
In triangle BCDBCD, we have CBD=47\angle CBD = 47^\circ. We also have that BDC\angle BDC and BAC\angle BAC subtend the same chord, and therefore, CAB=CDB\angle CAB = \angle CDB.
In the cyclic quadrilateral ABCDABCD, BCD+BAD=180\angle BCD + \angle BAD = 180^\circ
We know that BAD=75\angle BAD = 75^\circ. Therefore, BCD=18075=105\angle BCD = 180^\circ - 75^\circ = 105^\circ
BCD=BCA+ACD\angle BCD = \angle BCA + \angle ACD
ACD=ABD\angle ACD = \angle ABD (Angles subtended by same chord ADAD)
In ABD\triangle ABD, we have BAD=75\angle BAD = 75^\circ, ADB=28\angle ADB = 28^\circ, so ABD=1807528=77\angle ABD = 180^\circ - 75^\circ - 28^\circ = 77^\circ.
Thus ACD=77\angle ACD = 77^\circ.
Since BCD=BCA+ACD\angle BCD = \angle BCA + \angle ACD, we have 105=28+ABC105^\circ = 28^\circ + \angle ABC
Angles in same segment are equal, so CAD=CBD=47\angle CAD = \angle CBD = 47^\circ.
ADB=ACB=28\angle ADB = \angle ACB = 28^\circ.
In quadrilateral ABCDABCD, BCD+BAD=180\angle BCD + \angle BAD = 180^\circ.
We have BAD=75\angle BAD = 75^\circ, so BCD=105\angle BCD = 105^\circ.
Since ABC+ADC=180\angle ABC + \angle ADC = 180^\circ, ADC=ADB+BDC\angle ADC = \angle ADB + \angle BDC
CAB=CDB\angle CAB = \angle CDB. Also, ADB=28\angle ADB = 28^\circ and CBD=47\angle CBD = 47^\circ. Also, BCD=105\angle BCD = 105^\circ.
Consider triangle BCDBCD, CDB=180(47+105)=180152=28\angle CDB = 180 - (47+105) = 180 - 152 = 28^\circ.
Therefore, CAB=28\angle CAB = 28^\circ.
4) Calculation of BCD\angle BCD:
In a cyclic quadrilateral, opposite angles add up to 180180^\circ. Therefore, BCD+BAD=180\angle BCD + \angle BAD = 180^\circ.
Since we have calculated BAD=75\angle BAD = 75^\circ, we have BCD=18075=105\angle BCD = 180^\circ - 75^\circ = 105^\circ.

3. Final Answer

1) BAD=75\angle BAD = 75^\circ
2) CDP=47\angle CDP = 47^\circ
3) CAB=28\angle CAB = 28^\circ
4) BCD=105\angle BCD = 105^\circ

Related problems in "Geometry"

Point P moves on the circle $(x-6)^2 + y^2 = 9$. Find the locus of point Q which divides the line se...

LocusCirclesCoordinate Geometry
2025/6/12

We are given three points $A(5, 2)$, $B(-1, 0)$, and $C(3, -2)$. (1) We need to find the equation of...

CircleCircumcircleEquation of a CircleCoordinate GeometryCircumcenterRadius
2025/6/12

The problem consists of two parts: (a) A window is in the shape of a semi-circle with radius 70 cm. ...

CircleSemi-circlePerimeterBase ConversionNumber Systems
2025/6/11

The problem asks us to find the volume of a cylindrical litter bin in m³ to 2 decimal places (part a...

VolumeCylinderUnits ConversionProblem Solving
2025/6/10

We are given a triangle $ABC$ with $AB = 6$, $AC = 3$, and $\angle BAC = 120^\circ$. $AD$ is an angl...

TriangleAngle BisectorTrigonometryArea CalculationInradius
2025/6/10

The problem asks to find the values for I, JK, L, M, N, O, PQ, R, S, T, U, V, and W, based on the gi...

Triangle AreaInradiusGeometric Proofs
2025/6/10

In triangle $ABC$, $AB = 6$, $AC = 3$, and $\angle BAC = 120^{\circ}$. $D$ is the intersection of th...

TriangleLaw of CosinesAngle Bisector TheoremExternal Angle Bisector TheoremLength of SidesRatio
2025/6/10

A hunter on top of a tree sees an antelope at an angle of depression of $30^{\circ}$. The height of ...

TrigonometryRight TrianglesAngle of DepressionPythagorean Theorem
2025/6/10

A straight line passes through the points $(3, -2)$ and $(4, 5)$ and intersects the y-axis at $-23$....

Linear EquationsSlopeY-interceptCoordinate Geometry
2025/6/10

The problem states that the size of each interior angle of a regular polygon is $135^\circ$. We need...

PolygonsRegular PolygonsInterior AnglesExterior AnglesRotational Symmetry
2025/6/9