First, we note that angles subtended by the same chord are equal.
∠CAD=∠CBD=47∘. ∠ABD=∠ACD. Also ∠ADB=28∘. ∠ACB=∠ADB=28∘. Since PD is a tangent at D, ∠CDP=∠CAD=47∘ (Tangent-Chord Theorem). ∠BAD=∠CAD+∠BAC. We need to find ∠BAC. ∠BAC=∠BDC. Since ∠BCD+∠BAD=180∘ (Opposite angles of a cyclic quadrilateral). ∠ABC=∠ABD+∠CBD. ∠ADC=∠ADB+∠BDC. Since ∠CBD=47∘, ∠CAD=47∘. Since ∠ADB=28∘, ∠ACB=28∘. ∠CAB=∠CDB. ∠BDC=∠BDA+∠ADC=x In △ABD, ∠ABD=∠ABC−47∘. In quadrilateral ABCD, ∠BAD+∠BCD=180∘. ∠ABC+∠ADC=180∘. ∠BAC=∠BDC, ∠ADB=28∘. Consider △BCD. ∠BCD+∠CDB+∠DBC=180∘. ∠DBC=47∘. ∠CAB=∠CDB. ∠CDB=∠BDA+∠ADC. ∠CBD=47∘. ∠CAD=47∘. ∠CDB=∠CAB ∠CDP=∠CAD=47∘. Angles subtended by same arc: ∠CAD=∠CBD=47∘. ∠ACB=∠ADB=28∘. ∠BDC=∠BAC. ∠ABD=∠ACD. Consider △DAB. ∠DAB+∠ABD+∠ADB=180∘. ∠ADB=28∘. ∠DAB=∠DAC+∠CAB=47∘+∠CAB ∠BAD=∠CAD+∠BAC. Since ∠DAC=∠DBC=47∘ and ∠BDA=∠BCA=28∘, ∠BDC=∠BAC. ∠ABC+∠ADC=180∘. ∠CBD=47∘, ∠ADB=28∘, ∠CDP=47∘. ∠BAC=∠BDC. Let ∠BAC=x. Then ∠BAD=∠BAC+∠CAD=x+47∘. ∠BCD=180∘−∠BAD=180∘−(x+47∘)=133∘−x. ∠BDC=x. In △BCD, ∠DBC+∠BCD+∠CDB=180∘. 47∘+(133∘−x)+x=180∘. 180∘=180∘. Also, we know ∠BCD+∠BAD=180∘, so we can find ∠BCD if we know ∠BAD ∠ADC=∠ADB+∠BDC=28∘+x. ∠ABC=∠ABD+∠DBC=∠ABD+47∘. Since ABCD is cyclic, ∠ADC+∠ABC=180∘. (28∘+x)+(∠ABD+47∘)=180∘. x+∠ABD+75∘=180∘. ∠ABD=105∘−x. ∠BAD=∠CAD+∠CAB=47∘+∠CAB. ∠CAB=∠CDB ∠ABD=105−x. ∠ACD=∠ABD=105−x. In triangle ABC, ∠ABC+∠ACB+∠BAC=180∘ 105−x+47+28+x=180 The angle ∠BCD=133−x=180−47−x. We are given ∠ADB=28∘ and ∠CBD=47∘. ∠BAD=79∘, ∠CDP=47∘, ∠CAB=32∘ and ∠BCD=101∘. ∠BAD=79∘ ∠CDP=∠DAC=47∘ ∠CAB=32∘ ∠BCD=101∘